1887

Abstract

Enteric bacteria must survive the extreme acid of the stomach (pH 2 or less) before entering the intestine where they can colonize and cause disease. is superior to most other in surviving pH 2 acid stress because it has four known acid-resistance systems, the most studied of which depends on glutamic acid. Glutamate-dependent acid resistance requires glutamate decarboxylase isozymes GadA and GadB, as well as a glutamate/-aminobutyric acid antiporter encoded by . The regulatory protein GadE is the essential activator of the and genes. The transcription of , however, is controlled by numerous proteins. Two of these proteins, GadX and GadW, are AraC-family regulators whose sensory input signals are not known. Since Na and K play important roles in pH homeostasis, the contribution of these ions toward the regulation of this acid-resistance system was examined. The results indicated that a decrease in Na, but not K, concentration coincided with diminished acid resistance, and decreased expression of the , and genes. However, Na-dependent regulation of these genes dissipated in the absence of GadX and GadW. Since Na levels did not regulate or transcription, it is proposed that GadX and GadW sense intracellular Na concentration or some consequence of altered Na levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007575-0
2007-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3154.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007575-0&mimeType=html&fmt=ahah

References

  1. Booth, I. R. ( 1985; ). Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49, 359–378.
    [Google Scholar]
  2. Booth, I. R. ( 1999; ). The regulation of intracellular pH in bacteria. In Bacterial Response to pH, pp. 19–27. Chichester: Wiley.
  3. Castanie-Cornet, M. P. & Foster, J. W. ( 2001; ). Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147, 709–715.
    [Google Scholar]
  4. Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F. & Foster, J. W. ( 1999; ). Control of acid resistance in Escherichia coli. J Bacteriol 181, 3525–3535.
    [Google Scholar]
  5. Castanie-Cornet, M. P., Cam, K. & Jacq, A. ( 2006; ). RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 188, 4264–4270.[CrossRef]
    [Google Scholar]
  6. De Biase, D., Tramonti, A., John, R. A. & Bossa, F. ( 1996; ). Isolation, overexpression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli. Protein Expr Purif 8, 430–438.[CrossRef]
    [Google Scholar]
  7. De Biase, D., Tramonti, A., Bossa, F. & Visca, P. ( 1999; ). The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32, 1198–1211.[CrossRef]
    [Google Scholar]
  8. Foster, J. W. ( 2004; ). Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2, 898–907.[CrossRef]
    [Google Scholar]
  9. Foster, J. W. & Moreno, M. ( 1999; ). Inducible acid tolerance mechanisms in enteric bacteria. Novartis Found Symp 221, 55–69.
    [Google Scholar]
  10. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. ( 1994; ). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176, 269–275.
    [Google Scholar]
  11. Gallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K. & Ramos, J. L. ( 1997; ). AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61, 393–410.
    [Google Scholar]
  12. Gong, S., Richard, H. & Foster, J. W. ( 2003; ). YjdE (AdiC) is the arginine : agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185, 4402–4409.[CrossRef]
    [Google Scholar]
  13. Gong, S., Ma, Z. & Foster, J. W. ( 2004; ). The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol Microbiol 54, 948–961.[CrossRef]
    [Google Scholar]
  14. Gorden, J. & Small, P. L. C. ( 1993; ). Acid resistance in enteric bacteria. Infect Immun 61, 364–367.
    [Google Scholar]
  15. Hersh, B. M., Farooq, F. T., Barstad, D. N., Blankenshorn, D. L. & Slonczewski, J. L. ( 1996; ). A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178, 3978–3981.
    [Google Scholar]
  16. Hommais, F., Krin, E., Laurent-Winter, C., Soutourina, O., Malpertuy, A., Le Caer, J. P., Danchin, A. & Bertin, P. ( 2001; ). Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40, 20–36.[CrossRef]
    [Google Scholar]
  17. Iyer, R., Williams, C. & Miller, C. ( 2003; ). Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185, 6556–6561.[CrossRef]
    [Google Scholar]
  18. Jung, I. L. & Kim, I. G. ( 2003; ). Polyamines and glutamate decarboxylase-based acid resistance in Escherichia coli. J Biol Chem 278, 22846–22852.[CrossRef]
    [Google Scholar]
  19. Karpel, R., Alon, T., Glaser, G., Schuldiner, S. & Padan, E. ( 1991; ). Expression of a sodium proton antiporter (NhaA) in Escherichia coli is induced by Na+ and Li+ ions. J Biol Chem 266, 21753
    [Google Scholar]
  20. Kroll, R. G. & Booth, I. R. ( 1983; ). The relationship between intracellular pH, the pH gradient and potassium transport in Escherichia coli. Biochem J 216, 709–716.
    [Google Scholar]
  21. Lewinson, O., Padan, E. & Bibi, E. ( 2004; ). Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc Natl Acad Sci U S A 101, 14073–14078.[CrossRef]
    [Google Scholar]
  22. Lin, J., Lee, I. S., Frey, J., Slonczewski, J. L. & Foster, J. W. ( 1995; ). Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri and Escherichia coli. J Bacteriol 177, 4097–4104.
    [Google Scholar]
  23. Lo, C. J., Leake, M. C. & Berry, R. M. ( 2006; ). Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys J 90, 357–365.[CrossRef]
    [Google Scholar]
  24. Ma, Z., Richard, H., Tucker, D. L., Conway, T. & Foster, J. W. ( 2002; ). Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184, 7001–7012.[CrossRef]
    [Google Scholar]
  25. Ma, Z., Richard, H. & Foster, J. W. ( 2003a; ). pH-Dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185, 6852–6859.[CrossRef]
    [Google Scholar]
  26. Ma, Z., Gong, S., Richard, H., Tucker, D. L., Conway, T. & Foster, J. W. ( 2003b; ). GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49, 1309–1320.[CrossRef]
    [Google Scholar]
  27. Ma, Z., Masuda, N. & Foster, J. W. ( 2004; ). Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 186, 7378–7389.[CrossRef]
    [Google Scholar]
  28. Malashkevich, V. N., De Biase, D., Markovic-Housley, Z., Schlunegger, M. P., Bossa, F. & Jansonius, J. N. ( 1998; ). Crystallization and preliminary X-ray analysis of the beta-isoform of glutamate decarboxylase from Escherichia coli. Acta Crystallogr D Biol Crystallogr 54, 1020–1022.[CrossRef]
    [Google Scholar]
  29. Masuda, N. & Church, G. M. ( 2002; ). Escherichia coli gene expression responsive to levels of the response regulator EvgA. J Bacteriol 184, 6225–6234.[CrossRef]
    [Google Scholar]
  30. Masuda, N. & Church, G. M. ( 2003; ). Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48, 699–712.[CrossRef]
    [Google Scholar]
  31. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Nasser, W. & Reverchon, S. ( 2007; ). New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators. Anal Bioanal Chem 387, 381–390.[CrossRef]
    [Google Scholar]
  33. Opdyke, J. A., Kang, J. G. & Storz, G. ( 2004; ). GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186, 6698–6705.[CrossRef]
    [Google Scholar]
  34. Padan, E., Zilberstein, D. & Schuldiner, S. ( 1981; ). pH homeostasis in bacteria. Biochim Biophys Acta 650, 151–166.[CrossRef]
    [Google Scholar]
  35. Padan, E., Bibi, E., Ito, M. & Krulwich, T. A. ( 2005; ). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717, 67–88.[CrossRef]
    [Google Scholar]
  36. Price, S. B., Wright, J. C., DeGraves, F. J., Castanie-Cornet, M. P. & Foster, J. W. ( 2004; ). Acid resistance systems required for survival of Escherichia coli O157 : H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol 70, 4792–4799.[CrossRef]
    [Google Scholar]
  37. Rahav-Manor, O., Carmel, O., Karpel, R., Taglicht, D., Glaser, G., Schuldiner, S. & Padan, E. ( 1992; ). NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. J Biol Chem 267, 10433–10438.
    [Google Scholar]
  38. Richard, H. T. & Foster, J. W. ( 2003; ). Acid resistance in Escherichia coli. Adv Appl Microbiol 52, 167–186.
    [Google Scholar]
  39. Richard, H. & Foster, J. W. ( 2004; ). Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186, 6032–6041.[CrossRef]
    [Google Scholar]
  40. Sayed, A. K., Odom, C. & Foster, J. W. ( 2007; ). The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiology 153, 2584–2592.[CrossRef]
    [Google Scholar]
  41. Shijuku, T., Saito, H., Kakegawa, T. & Kobayashi, H. ( 2001; ). Expression of sodium/proton antiporter NhaA at various pH values in Escherichia coli. Biochim Biophys Acta 1506, 212–217.[CrossRef]
    [Google Scholar]
  42. Shin, S., Castanie-Cornet, M. P., Foster, J. W., Crawford, J. A., Brinkley, C. & Kaper, J. B. ( 2001; ). An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol Microbiol 41, 1133–1150.
    [Google Scholar]
  43. Small, P. L. C. ( 1998; ). Shigella and Escherichia coli strategies for survival at low pH. Jpn J Med Sci Biol 51, S81–S89.[CrossRef]
    [Google Scholar]
  44. Small, P., Blankenhorn, D., Welty, D., Zinser, E. & Slonczewski, J. L. ( 1994; ). Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176, 1729–1737.
    [Google Scholar]
  45. Texter, E. C., Jr ( 1968; ). Pressure and transit in the small intestine. The concept of propulsion and peripheral resistance in the alimentary canal. Am J Dig Dis 13, 443–454.[CrossRef]
    [Google Scholar]
  46. Tramonti, A., Visca, P., De Canio, M., Falconi, M. & De Biase, D. ( 2002; ). Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184, 2603–2613.[CrossRef]
    [Google Scholar]
  47. Tramonti, A., De Canio, M., Delany, I., Scarlato, V. & De Biase, D. ( 2006; ). Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. J Bacteriol 188, 8118–8127.[CrossRef]
    [Google Scholar]
  48. Vogel, H. J. & Bonner, D. M. ( 1956; ). Acetylornithase of Escherichia coli: partial purification and some properties. J Biol Chem 218, 97–106.
    [Google Scholar]
  49. Withers, H., Swift, S. & Williams, P. ( 2001; ). Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 4, 186–193.[CrossRef]
    [Google Scholar]
  50. Zilberstein, D., Agmon, V., Schuldiner, S. & Padan, E. ( 1982; ). The sodium/proton antiporter is part of the pH homeostasis mechanism in Escherichia coli. J Biol Chem 257, 3687–3691.
    [Google Scholar]
  51. Zwir, I., Shin, D., Kato, A., Nishino, K., Latifi, T., Solomon, F., Hare, J. M., Huang, H. & Groisman, E. A. ( 2005; ). Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci U S A 102, 2862–2867.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007575-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007575-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error