1887

Abstract

Attempts to identify members of the antiporter complement of the alkali- and saline-adapted soda lake alkaliphile N10 have used screens of DNA libraries in antiporter-deficient KNabc. Earlier screens used Na or Li for selection but only identified one NhaD-type antiporter whose properties were inconsistent with a robust role in pH homeostasis. Here, new screens using elevated pH for selection identified three other putative antiporter genes that conferred resistance to pH ≥8.5 as well as Na resistance. The three predicted gene products were in the calcium/cation antiporter (CaCA), cation/proton antiporter-2 (CPA2) and cation/proton antiporter-1 (CPA1) families of membrane transporters, and were designated Aa-CaxA, Aa-KefB and Aa-NhaP respectively, reflecting homology within those families. Aa-CaxA conferred the poorest Na resistance and also conferred modest Ca resistance. Aa-KefB and Aa-NhaP inhibited growth of a K uptake-deficient mutant (TK2420), suggesting that they catalysed K efflux. For Aa-NhaP, the reversibility of the growth inhibition by high K concentrations depended upon an organic nitrogen source, e.g. glutamine, rather than ammonium. This suggests that as well as K efflux is catalysed by Aa-NhaP. Vesicles of KNabc expressing Aa-NhaP, which conferred the strongest alkali resistance, exhibited K/H antiport activity in a pH range from 7.5 to 9.5, and with an apparent for K of 0.5 mM at pH 8.0. The properties of this antiporter are consistent with the possibility that this soda lake alkaliphile uses K()/H antiport as part of its alkaline pH homeostasis mechanism and part of its capacity to reduce potentially toxic accumulation of cytoplasmic K or respectively, under conditions of high osmolarity or active amino acid catabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007450-0
2007-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2168.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007450-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bakker, E. P., Booth, I. R., Dinnbier, U., Epstein, W. & Gajewska, A. ( 1987; ). Evidence for multiple K+ export systems in Escherichia coli. J Bacteriol 169, 3743–3749.
    [Google Scholar]
  3. Booth, I. R., Edwards, M. D., Murray, E. & Miller, S. ( 2005; ). The role of bacterial channels in cell physiology. In Bacterial Ion Channels and Their Eukaryotic Homologs, pp. 291–312. Edited by A. Kubalski & B. Marinac. Washington, DC: American Society for Microbiology.
  4. Brockman, R. W. & Heppel, L. A. ( 1968; ). On the localization of alkaline phosphatase and cyclic phosphodiesterase in Escherichia coli. Biochemistry 7, 2554–2562.[CrossRef]
    [Google Scholar]
  5. Buurman, E. T., Teixeira de Mattos, M. J. & Neijssel, O. M. ( 1991; ). Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coli. Arch Microbiol 155, 391–395.
    [Google Scholar]
  6. Cai, X. & Lytton, J. ( 2004; ). The cation/Ca2+ exchanger superfamily: phylogenetic analysis and structural implications. Mol Biol Evol 21, 1692–1703.[CrossRef]
    [Google Scholar]
  7. Epstein, W. ( 2003; ). The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75, 293–320.
    [Google Scholar]
  8. Epstein, W., Buurman, E., McLaggan, D. & Naprstek, J. ( 1993; ). Multiple mechanisms, roles and controls of K+ transport in Escherichia coli. Biochem Soc Trans 21, 1006–1010.
    [Google Scholar]
  9. Falb, M., Pfeiffer, F., Palm, P., Rodewald, K., Hickmann, V., Tittor, J. & Oesterhelt, D. ( 2005; ). Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15, 1336–1343.[CrossRef]
    [Google Scholar]
  10. Fujisawa, M., Kusomoto, A., Wada, Y., Tsuchiya, T. & Ito, M. ( 2005; ). NhaK, a novel monovalent cation/H+ antiporter of Bacillus subtilis. Arch Microbiol 183, 411–420.[CrossRef]
    [Google Scholar]
  11. Goldberg, E. B., Arbel, T., Chen, J., Karpel, R., Mackie, G. A., Schuldiner, S. & Padan, E. ( 1987; ). Characterization of a Na+/H+ antiporter gene of Escherichia coli. Proc Natl Acad Sci U S A 84, 2615–2619.[CrossRef]
    [Google Scholar]
  12. Grant, W. D. ( 2004; ). Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359, 1249–1267.[CrossRef]
    [Google Scholar]
  13. Grant, W. D. & Tindall, B. J. ( 1986; ). The alkaline saline environment. In Microbes in Extreme Environments. Edited by R. A. Herbert & G. A. Codd. London: Academic Press.
  14. Guffanti, A. A., Wei, Y., Rood, S. V. & Krulwich, T. A. ( 2002; ). An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol Microbiol 45, 145–153.[CrossRef]
    [Google Scholar]
  15. Harel-Bronstein, M., Dibrov, P., Olami, Y., Pinner, E., Schuldiner, S. & Padan, E. ( 1995; ). MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters (ΔnhaAΔnhaB), regains Na+ resistance and a capacity to excrete Na+ in a ΔμH+-independent fashion. J Biol Chem 270, 3816–3822.[CrossRef]
    [Google Scholar]
  16. Hellmer, J., Patzold, R. & Zeilinger, C. ( 2002; ). Identification of a pH regulated Na+/H+ antiporter of Methanococcus jannaschii. FEBS Lett 527, 245–249.[CrossRef]
    [Google Scholar]
  17. Horikoshi, K. ( 1991; ). Microorganisms in Alkaline Environments. New York: VCH Publishers.
  18. Ivey, D. M., Guffanti, A. A., Zemsky, J., Pinner, E., Karpel, R., Padan, E., Schuldiner, S. & Krulwich, T. A. ( 1993; ). Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene. J Biol Chem 268, 11296–11303.
    [Google Scholar]
  19. Jones, B. E., Grant, W. D., Duckworth, A. W. & Owenson, G. G. ( 1998; ). Microbial diversity of soda lakes. Extremophiles 2, 191–200.[CrossRef]
    [Google Scholar]
  20. Kakinuma, Y. & Igarashi, K. ( 1995; ). Potassium/proton antiport system of growing Enterococcus hirae at high pH. J Bacteriol 177, 2227–2229.
    [Google Scholar]
  21. Krulwich, T. A. ( 1995; ). Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15, 403–410.[CrossRef]
    [Google Scholar]
  22. Krulwich, T. A., Hicks, D. B., Swartz, T. H. & Ito, M. ( 2007; ). Bioenergetic adaptations that support alkaliphily. In Physiology and Biochemistry of Extremophiles. Edited by C. Gerday & N. Glansdorff. Washington, DC: American Society for Microbiology (in press).
  23. Lewinson, O., Padan, E. & Bibi, E. ( 2004; ). Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc Natl Acad Sci U S A 101, 14073–14078.[CrossRef]
    [Google Scholar]
  24. Liu, J., Xue, Y., Wang, Q., Wei, Y., Swartz, T. H., Hicks, D. B., Ito, M., Ma, Y. & Krulwich, T. A. ( 2005; ). The activity profile of the NhaD-type Na+(Li+)/H+ antiporter from the soda lake haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J Bacteriol 187, 7589–7595.[CrossRef]
    [Google Scholar]
  25. Ma, Y., Xue, Y., Grant, W. D., Collins, N. C., Duckworth, A. W., Van Steenbergen, R. P. & Jones, B. E. ( 2004; ). Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8, 193–200.[CrossRef]
    [Google Scholar]
  26. MacLean, M. J., Ness, L. S., Ferguson, G. P. & Booth, I. R. ( 1998; ). The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol Microbiol 27, 563–571.[CrossRef]
    [Google Scholar]
  27. Miller, S., Douglas, R. M., Carter, P. & Booth, I. R. ( 1997; ). Mutations in the glutathione-gated KefC K+ efflux system of Escherichia coli that cause constitutive activation. J Biol Chem 272, 24942–24947.[CrossRef]
    [Google Scholar]
  28. Miller, S., Ness, L. S., Wood, C. M., Fox, B. C. & Booth, I. R. ( 2000; ). Identification of an ancillary protein, YabF, required for activity of the KefC glutathione-gated potassium efflux system in Escherichia coli. J Bacteriol 182, 6536–6540.[CrossRef]
    [Google Scholar]
  29. Nakamura, T., Tokuda, H. & Unemoto, T. ( 1984; ). K+/H+ antiporter functions as a regulator of cytoplasmic pH in a marine bacterium, Vibrio alginolyticus. Biochim Biophys Acta 776, 330–336.[CrossRef]
    [Google Scholar]
  30. Nakamura, T., Kawasaki, S. & Unemoto, T. ( 1992; ). Roles of K+ and Na+ in pH homeostasis and growth of the marine bacterium Vibrio alginolyticus. J Gen Microbiol 138, 1271–1276.[CrossRef]
    [Google Scholar]
  31. Nakamura, C., Burgess, J. G., Sode, K. & Matsunaga, T. ( 1995; ). An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J Biol Chem 270, 28392–28396.[CrossRef]
    [Google Scholar]
  32. Nozaki, K., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 1998; ). A new Na+/H+ antiporter, NhaD, of Vibrio parahaemolyticus. Biochim Biophys Acta 1369, 213–220.[CrossRef]
    [Google Scholar]
  33. Ohyama, T., Igarashi, K. & Kobayashi, H. ( 1994; ). Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J Bacteriol 176, 4311–4315.
    [Google Scholar]
  34. Padan, E. & Krulwich, T. A. ( 2000; ). Sodium stress. In Bacterial Stress Responses, pp. 117–130. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  35. Padan, E., Venturi, M., Gerchman, Y. & Dover, N. ( 2001; ). Na+/H+ antiporters. Biochim Biophys Acta 1505, 144–157.[CrossRef]
    [Google Scholar]
  36. Padan, E., Bibi, E., Ito, M. & Krulwich, T. A. ( 2005; ). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717, 67–88.[CrossRef]
    [Google Scholar]
  37. Plack, R. H., Jr & Rosen, B. P. ( 1980; ). Cation/proton antiport systems in Escherichia coli. Absence of potassium/proton antiporter activity in a pH-sensitive mutant. J Biol Chem 255, 3824–3825.
    [Google Scholar]
  38. Price, G. D., Woodger, F. J., Badger, M. R., Howitt, S. M. & Tucker, L. ( 2004; ). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci U S A 101, 18228–18233.[CrossRef]
    [Google Scholar]
  39. Radchenko, M. V., Tanaka, K., Waditee, R., Oshimi, S., Matsuzaki, Y., Fukuhara, M., Kobayashi, H., Takabe, T. & Nakamura, T. ( 2006a; ). Potassium/proton antiport system of Escherichia coli. J Biol Chem 281, 19822–19829.[CrossRef]
    [Google Scholar]
  40. Radchenko, M. V., Waditee, R., Oshimi, S., Fukuhara, M., Takabe, T. & Nakamura, T. ( 2006b; ). Cloning, functional expression and primary characterization of Vibrio parahaemolyticus K+/H+ antiporter genes in Escherichia coli. Mol Microbiol 59, 651–663.[CrossRef]
    [Google Scholar]
  41. Ren, Q., Chen, K. & Paulsen, I. T. ( 2007; ). TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35, D274–D279.[CrossRef]
    [Google Scholar]
  42. Rosen, B. P. ( 1986; ). Ion extrusion systems in E. coli. Methods Enzymol 125, 328–386.
    [Google Scholar]
  43. Ruknudin, A. & Schulze, D. H. ( 2002; ). Proteomics approach to Na+/Ca+ exchangers in prokaryotes. Ann N Y Acad Sci 976, 103–108.
    [Google Scholar]
  44. Saaf, A., Baars, L. & von Heijne, G. ( 2001; ). The internal repeats in the Na+/Ca2+ exchanger-related Escherichia coli protein YrbG have opposite membrane topologies. J Biol Chem 276, 18905–18907.[CrossRef]
    [Google Scholar]
  45. Saier, M. H., Jr, Eng, B. H., Fard, S., Garg, J., Haggerty, D. A., Hutchinson, W. J., Jack, D. L., Lai, E. C., Liu, H. J. & other authors ( 1999; ). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422, 1–56.[CrossRef]
    [Google Scholar]
  46. Saier, M. H., Jr, Tran, C. V. & Barabote, R. D. ( 2006; ). TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34, D181–D186.[CrossRef]
    [Google Scholar]
  47. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  48. Southworth, T. W., Guffanti, A. A., Moir, A. & Krulwich, T. A. ( 2001; ). GerN, an endospore germination protein of Bacillus cereus, is an Na+/H+-K+ antiporter. J Bacteriol 183, 5896–5903.[CrossRef]
    [Google Scholar]
  49. Ventosa, A., Nieto, J. J. & Oren, A. ( 1998; ). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544.
    [Google Scholar]
  50. Verkhovskaya, M. L., Barquera, B. & Wikström, M. ( 2001; ). Deletion of one of two Escherichia coli genes encoding putative Na+/H+ exchangers (ycgO) perturbs cytoplasmic alkali cation balance at low osmolarity. Microbiology 147, 3005–3013.
    [Google Scholar]
  51. Waditee, R., Hossain, G. S., Tanaka, Y., Nakamura, T., Shikata, M., Takano, J. & Takabe, T. ( 2004; ). Isolation and functional characterization of Ca2+/H+ antiporters from cyanobacteria. J Biol Chem 279, 4330–4338.
    [Google Scholar]
  52. Waser, M., Hess-Bienz, D., Davies, K. & Solioz, M. ( 1992; ). Cloning and disruption of a putative NaH-antiporter gene of Enterococcus hirae. J Biol Chem 267, 5396–5400.
    [Google Scholar]
  53. Wei, Y., Southworth, T. W., Kloster, H., Ito, M., Guffanti, A. A., Moir, A. & Krulwich, T. A. ( 2003; ). Mutational loss of a K+ and NH+ 4 transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4. J Bacteriol 185, 5133–5147.[CrossRef]
    [Google Scholar]
  54. Wutipraditkul, N., Waditee, R., Incharoensakdi, A., Hibino, T., Tanaka, Y., Nakamura, T., Shikata, M. & Takabe, T. ( 2005; ). Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Appl Environ Microbiol 71, 4176–4184.[CrossRef]
    [Google Scholar]
  55. Yumoto, I. ( 2002; ). Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93, 342–353.[CrossRef]
    [Google Scholar]
  56. Zheng, X. ( 1992; ). Outline of salt lakes in Inner Mongolia: salt lakes of the Eerduosi Plateau of Inner Mongolia. In Salt Lakes of Inner Mongolia, pp. 219–287. Edited by X. Zheng. Beijing: Academic Press.
  57. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007450-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007450-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error