1887

Abstract

Type IV secretion systems are common bacterial macromolecule transporters that have been adapted to various functions, such as effector protein translocation to eukaryotic cells, nucleoprotein transfer to bacterial or eukaryotic cells, and DNA transport into and out of bacterial cells. , the causative agent of bacterial gastritis, peptic ulcers, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma, uses the Cag type IV secretion system to inject the CagA protein into host cells, thereby altering gene expression profiles and the host cell cytoskeleton. The molecular mechanism of CagA recognition as a type IV substrate is only poorly understood, but seems to be more complex than that of other type IV secretion systems. Apart from 14 essential components of the secretion apparatus, CagA translocation specifically requires the presence of four additional Cag proteins. Here we show that the CagA-binding protein CagF is a secretion chaperone-like protein that interacts with a 100 aa region that is adjacent to the C-terminal secretion signal of CagA. The interaction between CagA and CagF takes place at the bacterial cytoplasmic membrane, and is independent of a functional type IV secretion apparatus and other -encoded factors. Our data indicate that CagF binding precedes recognition of the C-terminal CagA translocation signal, and that both steps are required to recruit CagA to the type IV translocation channel.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007385-0
2007-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2896.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007385-0&mimeType=html&fmt=ahah

References

  1. Amieva M. R., Vogelmann R., Covacci A., Tompkins L. S., Nelson W. J., Falkow S. 2003; Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300:1430–1434
    [Google Scholar]
  2. Amor J. C., Swails J., Zhu X., Roy C. R., Nagai H., Ingmundson A., Cheng X., Kahn R. A. 2005; The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem 280:1392–1400
    [Google Scholar]
  3. Atmakuri K., Ding Z., Christie P. J. 2003; VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49:1699–1713
    [Google Scholar]
  4. Atmakuri K., Cascales E., Christie P. J. 2004; Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54:1199–1211
    [Google Scholar]
  5. Backert S., Meyer T. F. 2006; Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217
    [Google Scholar]
  6. Bardill J. P., Miller J. L., Vogel J. P. 2005; IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol 56:90–103
    [Google Scholar]
  7. Birtalan S. C., Phillips R. M., Ghosh P. 2002; Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol Cell 9:971–980
    [Google Scholar]
  8. Blaser M. J., Atherton J. C. 2004; Helicobacter pylori persistence: biology and disease. J Clin Invest 113:321–333
    [Google Scholar]
  9. Blum H., Beier H., Gross H. J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99
    [Google Scholar]
  10. Bourzac K. M., Guillemin K. 2005; Helicobacter pylori–host cell interactions mediated by type IV secretion. Cell Microbiol 7:911–919
    [Google Scholar]
  11. Brandt S., Kwok T., Hartig R., König W., Backert S. 2005; NF- κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A 102:9300–9305
    [Google Scholar]
  12. Buhrdorf R., Förster C., Haas R., Fischer W. 2003; Topological analysis of a putative virB8 homologue essential for the cag type IV secretion system in Helicobacter pylori. Int J Med Microbiol 293:213–217
    [Google Scholar]
  13. Busler V. J., Torres V. J., McClain M. S., Tirado O., Friedman D. B., Cover T. L. 2006; Protein–protein interactions among Helicobacter pylori Cag proteins. J Bacteriol 188:4787–4800
    [Google Scholar]
  14. Cambronne E. D., Roy C. R. 2006; Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic 7:929–939
    [Google Scholar]
  15. Cascales E., Christie P. J. 2003; The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149
    [Google Scholar]
  16. Cascales E., Christie P. J. 2004; Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173
    [Google Scholar]
  17. Cheng L. W., Schneewind O. 1999; Yersinia enterocolitica type III secretion. On the role of SycE in targeting YopE into HeLa cells. J Biol Chem 274:22102–22108
    [Google Scholar]
  18. Christie P. J., Atmakuri K., Krishnamoorthy V., Jakubowski S., Cascales E. 2005; Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485
    [Google Scholar]
  19. Churin Y., Al-Ghoul L., Kepp O., Meyer T. F., Birchmeier W., Naumann M. 2003; Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol 161:249–255
    [Google Scholar]
  20. Couturier M. R., Tasca E., Montecucco C., Stein M. 2006; Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 74:273–281
    [Google Scholar]
  21. Deng W., Chen L., Peng W. T., Liang X., Sekiguchi S., Gordon M. P., Comai L., Nester E. W. 1999; VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 31:1795–1807
    [Google Scholar]
  22. Drew D., Sjostrand D., Nilsson J., Urbig T., Chin C. N., de Gier J. W., von Heijne G. 2002; Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A 99:2690–2695
    [Google Scholar]
  23. El Etr S. H., Mueller A., Tompkins L. S., Falkow S., Merrell D. S. 2004; Phosphorylation-independent effects of CagA during interaction between Helicobacter pylori and T84 polarized monolayers. J Infect Dis 190:1516–1523
    [Google Scholar]
  24. Exner M. M., Doig P., Trust T. J., Hancock R. E. W. 1995; Isolation and characterization of a family of porin proteins from Helicobacter pylori. Infect Immun 63:1567–1572
    [Google Scholar]
  25. Fischer W., Haas R. 2004; The RecA protein of Helicobacter pylori requires a posttranslational modification for full activity. J Bacteriol 186:777–784
    [Google Scholar]
  26. Fischer W., Buhrdorf R., Gerland E., Haas R. 2001a; Outer membrane targeting of passenger proteins by the vacuolating cytotoxin autotransporter of Helicobacter pylori. Infect Immun 69:6769–6775
    [Google Scholar]
  27. Fischer W., Püls J., Buhrdorf R., Gebert B., Odenbreit S., Haas R. 2001b; Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42:1337–1348 (Erratum in: Mol Microbiol 2003, 47, 1759)
    [Google Scholar]
  28. Fischer W., Haas R., Odenbreit S. 2002; Type IV secretion systems in pathogenic bacteria. Int J Med Microbiol 292:159–168
    [Google Scholar]
  29. Franco A. T., Israel D. A., Washington M. K., Krishna U., Fox J. G., Rogers A. B., Neish A. S., Collier-Hyams L., Perez-Perez G. I. other authors 2005; Activation of β-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A 102:10646–10651
    [Google Scholar]
  30. Ghosh P. 2004; Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68:771–795
    [Google Scholar]
  31. Gilmour M. W., Gunton J. E., Lawley T. D., Taylor D. E. 2003; Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled-coil mating pair formation protein TrhB. Mol Microbiol 49:105–116
    [Google Scholar]
  32. Gomis-Rüth F. X., Sola M., De La Cruz F., Coll M. 2004; Coupling factors in macromolecular type-IV secretion machineries. Curr Pharm Des 10:1551–1565
    [Google Scholar]
  33. Guillemin K., Salama N. R., Tompkins L. S., Falkow S. 2002; Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc Natl Acad Sci U S A 99:15136–15141
    [Google Scholar]
  34. Haas R., Meyer T. F., van Putten J. P. M. 1993; Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Mol Microbiol 8:753–760
    [Google Scholar]
  35. Heuermann D., Haas R. 1998; A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet 257:519–528
    [Google Scholar]
  36. Higashi H., Tsutsumi R., Muto S., Sugiyama T., Azuma T., Asaka M., Hatakeyama M. 2002; SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori Cag protein. Science 295:683–686
    [Google Scholar]
  37. Higashi H., Nakaya A., Tsutsumi R., Yokoyama K., Fujii Y., Ishikawa S., Higuchi M., Takahashi A., Kurashima Y. other authors 2004; Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 279:17205–17216
    [Google Scholar]
  38. Hofreuter D., Karnholz A., Haas R. 2003; Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. Int J Med Microbiol 293:153–165
    [Google Scholar]
  39. Hohlfeld S., Pattis I., Püls J., Plano G. V., Haas R., Fischer W. 2006; A C-terminal secretion signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol Microbiol 59:1624–1637
    [Google Scholar]
  40. Jakubowski S. J., Cascales E., Krishnamoorthy V., Christie P. J. 2005; Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187:3486–3495
    [Google Scholar]
  41. Lee S. H., Galan J. E. 2004; Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51:483–495
    [Google Scholar]
  42. Llosa M., Zunzunegui S., De La Cruz F. 2003; Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A 100:10465–10470
    [Google Scholar]
  43. Mimuro H., Suzuki T., Tanaka J., Asahi M., Haas R., Sasakawa C. 2002; Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell 10:745–755
    [Google Scholar]
  44. Moese S., Selbach M., Zimny-Arndt U., Jungblut P. R., Meyer T. F., Backert S. 2001; Identification of a tyrosine-phosphorylated 35 kDa carboxy-terminal fragment (p35CagA) of the Helicobacter pylori CagA protein in phagocytic cells: processing or breakage?. Proteomics 1:618–629
    [Google Scholar]
  45. Nagai H., Cambronne E. D., Kagan J. C., Amor J. C., Kahn R. A., Roy C. R. 2005; A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102:826–831
    [Google Scholar]
  46. Nikaido H. 1994; Isolation of outer membranes. Methods Enzymol 235:225–234
    [Google Scholar]
  47. Ninio S., Zuckman-Cholon D. M., Cambronne E. D., Roy C. R. 2005; The Legionella IcmS–IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol Microbiol 55:912–926
    [Google Scholar]
  48. Odenbreit S., Püls J., Sedlmaier B., Gerland E., Fischer W., Haas R. 2000; Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:1497–1500
    [Google Scholar]
  49. Parsot C., Hamiaux C., Page A. L. 2003; The various and varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 6:7–14
    [Google Scholar]
  50. Peek R. M. J., Blaser M. J. 2002; Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2:28–37
    [Google Scholar]
  51. Püls J, Fischer W., Haas R. 2002; Activation of Helicobacter pylori CagA by tyrosine phosphorylation is essential for dephosphorylation of host cell proteins in gastric epithelial cells. Mol Microbiol 43:961–969
    [Google Scholar]
  52. Rieder G., Fischer W., Haas R. 2005a; Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr Opin Microbiol 8:67–73
    [Google Scholar]
  53. Rieder G., Merchant J. L., Haas R. 2005b; Helicobacter pylori cag–type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 128:1229–1242
    [Google Scholar]
  54. Rohde M., Püls J., Buhrdorf R., Fischer W., Haas R. 2003; A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol 49:219–234
    [Google Scholar]
  55. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  56. Schnaitman C. A. 1971; Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J Bacteriol 108:545–552
    [Google Scholar]
  57. Schulein R., Guye P., Rhomberg T. A., Schmid M. C., Schröder G., Vergunst A. C., Carena I., Dehio C. 2005; A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A 102:856–861
    [Google Scholar]
  58. Segal E. D., Cha J., Lo J., Falkow S., Tompkins L. S. 1999; Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96:14559–14564
    [Google Scholar]
  59. Selbach M., Moese S., Hurwitz R., Hauck C. R., Meyer T. F., Backert S. 2003; The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J 22:515–528
    [Google Scholar]
  60. Selbach M., Moese S., Backert S., Jungblut P. R., Meyer T. F. 2004; The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics 4:2961–2968
    [Google Scholar]
  61. Seydel A., Tasca E., Berti D., Rappuoli R., Del Giudice G., Montecucco C. 2002; Characterization and immunogenicity of the CagF protein of the cag pathogenicity island of Helicobacter pylori. Infect Immun 70:6468–6470
    [Google Scholar]
  62. Suerbaum S., Michetti P. 2002; Helicobacter pylori infection. N Engl J Med 347:1175–1186
    [Google Scholar]
  63. Sundberg C. D., Ream W. 1999; The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol 181:6850–6855
    [Google Scholar]
  64. Sundberg C., Meek L., Carroll K., Das A., Ream W. 1996; VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol 178:1207–1212
    [Google Scholar]
  65. Suzuki M., Mimuro H., Suzuki T., Park M., Yamamoto T., Sasakawa C. 2005; Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med 202:1235–1247
    [Google Scholar]
  66. Torruellas-Garcia J., Ferracci F., Jackson M. W., Joseph S., Pattis I., Plano L. R., Fischer W., Plano G. V. 2006; Measurement of effector protein injection by type III and type IV secretion systems using a 13-residue phosphorylatable GSK tag. Infect Immun 74:5645–5657
    [Google Scholar]
  67. Umehara S., Higashi H., Ohnishi N., Asaka M., Hatakeyama M. 2003; Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22:8337–8342
    [Google Scholar]
  68. Vergunst A. C., van Lier M. C., den Dulk-Ras A., Grosse Stüve T. A., Ouwehand A., Hooykaas P. J. 2005; Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102:832–837
    [Google Scholar]
  69. Viala J., Chaput C., Boneca I. G., Cardona A., Girardin S. E., Moran A. P., Athman R., Memet S., Huerre M. R. other authors 2004; Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5:1166–1174
    [Google Scholar]
  70. Vincent C. D., Vogel J. P. 2006; The Legionella pneumophila IcmS–LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol Microbiol 61:596–613
    [Google Scholar]
  71. Yokoyama K., Higashi H., Ishikawa S., Fujii Y., Kondo S., Kato H., Azuma T., Wada A., Hirayama T. other authors 2005; Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci U S A 102:9661–9666
    [Google Scholar]
  72. Zhao Z., Sagulenko E., Ding Z., Christie P. J. 2001; Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J Bacteriol 183:3855–3865
    [Google Scholar]
  73. Zhou X. R., Christie P. J. 1999; Mutagenesis of the Agrobacterium VirE2 single-stranded DNA-binding protein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construction. J Bacteriol 181:4342–4352
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007385-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007385-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error