1887

Abstract

Three putative alkaline phosphatase genes, , and , were identified in the genome of by homology with the amino acid sequence obtained from the PhoA protein of . PhoA and PhoC correspond to broad-spectrum alkaline phosphatases whereas PhoD is similar to a Ca-dependent phospholipase D of . The and genes were efficiently expressed in R5 medium under phosphate-limited conditions, as shown by studies using the reporter gene, whereas was poorly transcribed under the same conditions. Expression of was clearly PhoP-dependent since it was not transcribed in the Δ mutant and was strongly activated under low phosphate concentrations. Similarly, expression of was PhoP-dependent and highly sensitive to phosphate availability. By contrast, expression of was not PhoP-dependent. Electrophoretic mobility shift assays showed that PhoP binds to the and promoters, but not to that of . Footprinting studies with GST–PhoP revealed the presence of a PHO box (two direct 11 nt repeats) in the promoter and two PHO boxes in the promoter of . The transcription start points of the three promoters were identified by primer extension. The transcription start point of coincides with the G of its translation start codon, indicating that this gene is transcribed as a leaderless mRNA. The deduced −10 and −35 regions of (but not those of ) overlapped with the PHO boxes in this promoter, suggesting that an excess of PhoP interferes with binding of the RNA polymerase to this promoter. In summary, the three promoters showed clear differences in the modulation of their expression by PhoP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007070-0
2007-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3527.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007070-0&mimeType=html&fmt=ahah

References

  1. Bendtsen, J. D., Nielsen, H., Widdick, D., Palmer, T. & Brunak, S. ( 2005; ). Prediction of twin-arginine signal peptides. BMC Bioinformatics 6, 167 [CrossRef]
    [Google Scholar]
  2. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H. & other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  3. Berks, B. C. ( 1996; ). A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22, 393–404.[CrossRef]
    [Google Scholar]
  4. Bourn, W. R. & Babb, B. ( 1995; ). Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res 23, 3696–3703.[CrossRef]
    [Google Scholar]
  5. Clayton, T. M. & Bibb, M. J. ( 1990; ). Streptomyces promoter-probe plasmids that utilise the xylE gene of Pseudomonas putida. Nucleic Acids Res 18, 1077 [CrossRef]
    [Google Scholar]
  6. Demain, A. L. & Fang, A. ( 2000; ). The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69, 1–39.
    [Google Scholar]
  7. Fernández-Ábalos, J. M., Sánchez, P., Coll, P. M., Villanueva, J. R., Pérez, P. & Santamaría, R. I. ( 1992; ). Cloning and nucleotide sequence of celA1, and endo-β-1,4-glucanase-encoding gene from Streptomyces halstedii JM8. J Bacteriol 174, 6368–6376.
    [Google Scholar]
  8. García-González, M. D., Martín, J. F., Vigal, T. & Liras, P. ( 1991; ). Characterization, expression in Streptomyces lividans, and processing of the amylase of Streptomyces griseus IMRU 3570: two different amylases are derived from the same gene by an intracellular processing mechanism. J Bacteriol 173, 2451–2458.
    [Google Scholar]
  9. Geng, D., Baker, D. P., Foley, S. F., Zhou, C., Stieglitz, K. & Roberts, M. F. ( 1999; ). A 20-kDa domain is required for phosphatidic acid-induced allosteric activation of phospholipase D from Streptomyces chromofuscus. Biochim Biophys Acta 1430, 234–244.[CrossRef]
    [Google Scholar]
  10. Ghorbel, S., Kormanec, J., Artus, A. & Virolle, M. J. ( 2006; ). Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 188, 677–686.[CrossRef]
    [Google Scholar]
  11. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  12. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. & Hirakawa, M. ( 2006; ). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34, D354–D357.[CrossRef]
    [Google Scholar]
  13. Kieser, T., Bibb, M., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich, UK: The John Innes Foundation.
  14. Mansouri, K. & Piepersberg, W. ( 1991; ). Genetics of streptomycin production in Streptomyces griseus: nucleotide sequence of five genes, strFGHIK, including a phosphatase gene. Mol Gen Genet 228, 459–469.
    [Google Scholar]
  15. Martín, J. F. ( 2004; ). Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J Bacteriol 186, 5197–5201.[CrossRef]
    [Google Scholar]
  16. Martín, J. F. & Demain, A. L. ( 1977; ). Cleavage of adenosine-5′-monophosphate during uptake by Streptomyces griseus. J Bacteriol 132, 590–595.
    [Google Scholar]
  17. Martín, J. F. & Demain, A. L. ( 1980; ). Control of antibiotic synthesis. Microbiol Rev 44, 230–251.
    [Google Scholar]
  18. Martín, J. F., Marcos, A. T., Martín, A., Asturias, J. A. & Liras, P. ( 1994; ). Phosphate control of antibiotic biosynthesis at the transcriptional level. In Phosphate in Microorganisms: Cellular and Molecular Biology, pp. 140–147. Edited by A. Torriani-Gorini, E. Yagil & S. Silver. Washington, DC: American Society for Microbiology.
  19. Martín, J. F., Gutiérrez, S. & Aparicio, J. F. ( 2000; ). Secondary metabolites. In Encyclopedia of Microbiology, vol. 4, 2nd edn, pp. 213–236. Edited by J. Lederberg. San Diego, CA: Academic Press.
  20. Martínez-Domínguez, B., Ibáñez-Gómez, M. V. & Rincón-León, F. ( 2002; ). Phytic acid: nutritional aspects and analytical implications. Arch Latinoam Nutr 52, 219–231.
    [Google Scholar]
  21. Mendes, M. V., Tunca, S., Antón, N., Recio, E., Sola-Landa, A., Aparicio, J. F. & Martín, J. F. ( 2007; ). The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng 9, 217–227.[CrossRef]
    [Google Scholar]
  22. Moura, R. S., Martín, J. F., Martín, A. & Liras, P. ( 2001; ). Substrate analysis and molecular cloning of the extracellular alkaline phosphatase of Streptomyces griseus. Microbiology 147, 1525–1533.
    [Google Scholar]
  23. Patek, M., Muth, G. & Wohlleben, W. ( 2003; ). Function of Corynebacterium glutamicum promoters in Escherichia coli, Streptomyces lividans, and Bacillus subtilis. J Biotechnol 104, 325–334.[CrossRef]
    [Google Scholar]
  24. Rodríguez-García, A., Ludovice, M., Martín, J. F. & Liras, P. ( 1997; ). Arginine boxes and the argR gene in Streptomyces clavuligerus: evidence for a clear regulation of the arginine pathway. Mol Microbiol 25, 219–228.[CrossRef]
    [Google Scholar]
  25. Rodríguez-García, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A. & Martín, J. F. ( 2007; ). Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. Proteomics 7, 2410–2429.[CrossRef]
    [Google Scholar]
  26. Schaerlaekens, K., Lammertyn, E., Geukens, N., De Keersmaeker, S., Anne, J. & Van Mellaert, L. ( 2004; ). Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans. J Biotechnol 112, 279–288.[CrossRef]
    [Google Scholar]
  27. Sola-Landa, A., Moura, R. S. & Martín, J. F. ( 2003; ). The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100, 6133–6138.[CrossRef]
    [Google Scholar]
  28. Sola-Landa, A., Rodríguez-García, A., Franco-Domínguez, E. & Martín, J. F. ( 2005; ). Binding of PhoP to promoters of phosphate regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56, 1373–1385.[CrossRef]
    [Google Scholar]
  29. Stieglitz, K., Seaton, B. & Roberts, M. F. ( 1999; ). The role of interfacial binding in the activation of Streptomyces chromofuscus phospholipase D by phosphatidic acid. J Biol Chem 274, 35367–35374.[CrossRef]
    [Google Scholar]
  30. Stieglitz, K. A., Seaton, B. A. & Roberts, M. F. ( 2001; ). Binding of proteolytically processed phospholipase D from Streptomyces chromofuscus to phosphatidylcholine membranes facilitates vesicle aggregation and fusion. Biochemistry 40, 13954–13963.[CrossRef]
    [Google Scholar]
  31. von Döhren, H. & Gräfe, H. ( 1997; ). General aspects of secondary metabolism. In Biotechnology, vol. 7. Products of Secondary Metabolism, pp. 1–55. Edited by H. J. Rehm & G. Reed. Weinheim: VCH Verlag.
  32. Widdick, D. A., Dilks, K., Chandra, G., Bottrill, A., Naldrett, M., Pohlschröder, M. & Palmer, T. ( 2006; ). The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci U S A 103, 17927–17932.[CrossRef]
    [Google Scholar]
  33. Yang, H. & Roberts, M. F. ( 2002; ). Cloning, overexpression, and characterization of a bacterial Ca2+-dependent phospholipase D. Protein Sci 11, 2958–2968.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007070-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007070-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error