1887

Abstract

Bacterial cell division is a highly co-ordinated and fine-tuned process. In the unicellular cyanobacterium sp. strain PCC 7942, inactivating mutations in the and genes block cell division and result in a phenotype with extensively elongated cells. In order to establish the pleiotropic responses induced and cellular processes affected by blocked cell division, the proteomes of wild-type and the cell division mutants Ftn2 and Ftn6 of sp. strain PCC 7942 were characterized and compared. By separating soluble extracted proteins on 2D gels, more than 800 protein spots were visualized on each SYPRO Ruby-stained gel. Quantitative differences in protein composition were detected by using the PDQuest software, and comparative analysis revealed that 76 protein spots changed significantly in the cell division mutants. These protein spots were selected for identification using peptide mass fingerprints generated by MALDI-TOF MS. Fifty-three protein spots were successfully identified, representing 44 different proteins. The upregulated proteins include proteins involved in cell division/cell morphogenesis, protein synthesis and processing, oxidative stress response, amino acid metabolism, nucleotide biosynthesis, and glycolysis, as well as unknown proteins. Among the downregulated proteins are those involved in chromosome segregation, protein processing, photosynthesis, redox regulation, carbon dioxide fixation, nucleotide biosynthesis, the biosynthetic pathway to fatty acids, and energy production. Besides eliciting common responses, inactivation of Ftn2 and Ftn6 in the mutants may result in different responses in protein levels between the mutants. Among 18 identified differentially affected protein spots, 75 % (9/12) of the protein spots affected in the Ftn2 mutant were upshifted, whereas in the Ftn6 mutant 70 % (7/10) of the affected protein spots were downshifted. Identification of such differentially expressed proteins provides new targets for future studies that will allow assessment of their physiological roles and significance in cyanobacterial cell division.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007039-0
2007-08-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2505.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007039-0&mimeType=html&fmt=ahah

References

  1. Åkerlund T., Gullbrand B., Nordström K.. 2002; Effects of the Min system on nucleoid segregation in Escherichia coli . Microbiology148:3213–3222
    [Google Scholar]
  2. Badger M. R., Price G. D.. 2003; CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot54:609–622
    [Google Scholar]
  3. Bath J., Wu L. J., Errington J., Wang J. C.. 2000; Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science290:995–997
    [Google Scholar]
  4. Berggren K., Chernokalskaya E., Steinberg T. H., Kemper C., Lopez M. F., Diwu Z., Haugland R. P., Patton W. F.. 2000; Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis21:2509–2521
    [Google Scholar]
  5. Bi E. F., Lutkenhaus J.. 1991; FtsZ ring structure associated with division in Escherichia coli . Nature354:161–164
    [Google Scholar]
  6. Blatch G. L., Lässle M.. 1999; The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays21:932–939
    [Google Scholar]
  7. Caldovic L., Tuchman M.. 2003; N -Acetylglutamate and its changing role through evolution. Biochem J372:279–290
    [Google Scholar]
  8. Carballido-López R, Errington J.. 2003; A dynamic bacterial cytoskeleton. Trends Cell Biol13:577–583
    [Google Scholar]
  9. Coburn G. A., Mackie G. A.. 1999; Degradation of mRNA in Escherichia coli : an old problem with some new twists. Prog Nucleic Acid Res Mol Biol62:55–108
    [Google Scholar]
  10. Dolganov N., Grossman A. R.. 1993; Insertional inactivation of genes to isolate mutants of Synechococcus sp. strain PCC 7942: isolation of filamentous strains. J Bacteriol175:7644–7651
    [Google Scholar]
  11. Easter J. Jr, Gober J. W.. 2002; ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell10:427–434
    [Google Scholar]
  12. Figge R. M., Divakaruni A. V., Gober J. W.. 2004; MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus . Mol Microbiol51:1321–1332
    [Google Scholar]
  13. Fulda S., Huang F., Nilsson F., Hagemann M., Norling B.. 2000; Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem267:5900–5907
    [Google Scholar]
  14. Fulda S., Mikkat S., Huang F., Huckauf J., Marin K., Norling B., Hagemann M.. 2006; Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics6:2733–2745
    [Google Scholar]
  15. Gitai Z., Dye N. A., Shapiro L.. 2004; An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A101:8643–8648
    [Google Scholar]
  16. Gitai Z., Dye N. A., Reisenauer A., Wachi M., Shapiro L.. 2005; MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell120:329–341
    [Google Scholar]
  17. Gornicki P., Scappino L. A., Haselkorn R.. 1993; Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl carrier protein. J Bacteriol175:5268–5272
    [Google Scholar]
  18. Graumann P. L.. 2001; SMC proteins in bacteria: condensation motors for chromosome segregation?. Biochimie83:53–59
    [Google Scholar]
  19. Harry E. J., Rodwell J., Wake R. G.. 1999; Co-ordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol Microbiol33:33–40
    [Google Scholar]
  20. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C.. 1988; A large family of bacterial activator proteins. Proc Natl Acad Sci U S A85:6602–6606
    [Google Scholar]
  21. Hihara Y., Kamei A., Kanehisa M., Kaplan A., Ikeuchi M.. 2001; DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell13:793–806
    [Google Scholar]
  22. Hu B., Yang G., Zhao W., Zhang Y., Zhao J.. 2007; MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol63:1640–1652
    [Google Scholar]
  23. Huang F., Fulda S., Hagemann M., Norling B.. 2006; Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC6803: Proteomics 6910–920
    [Google Scholar]
  24. Jones L. J., Carballido-Lopez R., Errington J.. 2001; Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis . Cell104:913–922
    [Google Scholar]
  25. Kappock T. J., Ealick S. E., Stubbe J.. 2000; Modular evolution of the purine biosynthetic pathway. Curr Opin Chem Biol4:567–572
    [Google Scholar]
  26. Katayama T., Kubota T., Kurokawa K., Crooke E., Sekimizu K.. 1998; The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell94:61–71
    [Google Scholar]
  27. Kawakami H., Iwura T., Takata M., Sekimizu K., Hiraga S., Katayama T.. 2001; Arrest of cell division and nucleoid partition by genetic alterations in the sliding clamp of the replicase and in DnaA. Mol Genet Genomics266:167–179
    [Google Scholar]
  28. Klint J., Rasmussen U., Bergman B.. 2007; FtsZ may have dual roles in the filamentous cyanobacterium Nostoc/Anabaena sp. strain PCC 7120. J Plant Physiol164:11–18
    [Google Scholar]
  29. Koksharova O. A., Wolk C. P.. 2002; A novel gene that bears a DnaJ motif influences cyanobacterial cell division. J Bacteriol184:5524–5528
    [Google Scholar]
  30. Koksharova O. A., Klint J., Rasmussen U.. 2006; The first protein map of Synechococcus sp. strain PCC 7942. Mikrobiologiia75:765–774
    [Google Scholar]
  31. Kovacs E., van der Vies S. M., Glatz A., Torok Z., Varvasovszki V., Horvath I., Vigh L.. 2001; The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity. Biochem Biophys Res Commun289:908–915
    [Google Scholar]
  32. Kruse T., Möller-Jensen J., Löbner-Olesen A., Gerdes K.. 2003; Dysfunctional MreB inhibits chromosome segregation in Escherichia coli . EMBO J22:5283–5292
    [Google Scholar]
  33. Kruse T., Blagoev B., Løbner-Olesen A., Wachi M., Sasaki K., Iwai N., Mann M., Gerdes K.. 2006; Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli . Genes Dev20:113–124
    [Google Scholar]
  34. Kumar J. K., Tabor S., Richardson C. C.. 2004; Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli . Proc Natl Acad Sci U S A101:3759–3764
    [Google Scholar]
  35. Len A. C., Harty D. W., Jacques N. A.. 2004; Stress-responsive proteins are upregulated in Streptococcus mutants during acid tolerance. Microbiology150:1339–1351
    [Google Scholar]
  36. Liu Y., Tsinoremas N. F.. 1996; An unusual gene arrangement for the putative chromosome replication origin and circadian expression of dnaN in Synechococcus sp. strain PCC 7942. Gene172:105–109
    [Google Scholar]
  37. Liu Y., Tsinoremas N. F., Golden S. S., Kondo T., Johnson C. H.. 1996; Circadian expression of genes involved in the purine biosynthetic pathway of the cyanobacterium Synechococcus sp. strain PCC 7942. Mol Microbiol20:1071–1081
    [Google Scholar]
  38. Löwe J., van den Ent F., Amos L. A.. 2004; Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct33:177–198
    [Google Scholar]
  39. Lutkenhaus J.. 2002; Dynamic proteins in bacteria. Curr Opin Microbiol5:548–552
    [Google Scholar]
  40. Marcus Y., Altman-Gueta H., Finkler A., Gurevitz M.. 2003; Dual role of cysteine 172 in redox regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity and degradation. J Bacteriol185:1509–1517
    [Google Scholar]
  41. Margolin W.. 2001; Spatial regulation of cytokinesis in bacteria. Curr Opin Microbiol4:647–652
    [Google Scholar]
  42. Margolin W.. 2005; FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol6:862–871
    [Google Scholar]
  43. Maruyama K., Sato N., Ohta N.. 1999; Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Res27:2029–2036
    [Google Scholar]
  44. Mary I., Tu C.-J., Grossman A., Vaulot D.. 2004; Effects of high light on transcripts of stress-associated genes for the cyanobacteria Synechocystis sp. PCC 6803 and Prochlorococcus MED4 and MIT9313. Microbiology150:1271–1281
    [Google Scholar]
  45. Mayer F.. 2003; Cytoskeletons in prokaryotes. Cell Biol Int27:429–438
    [Google Scholar]
  46. Mazouni K., Domain F., Cassier-Chauvat C., Chauvat F.. 2004; Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ. ZipN and MinCDE. Mol Microbiol52:1145–1158
    [Google Scholar]
  47. McCarthy J., Hopwood F., Oxley D., Laver M., Castagna A., Righetti P. G., Williams K., Herbert B.. 2003; Carbamylation of proteins in 2-D electrophoresis – myth or reality?. J Proteome Res2:239–242
    [Google Scholar]
  48. Michie K. A., Löwe J.. 2006; Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem75:467–492
    [Google Scholar]
  49. Mirelman D.. 1979; Biosynthesis and assembly of cell wall peptidoglycan. In Bacterial Outer Membranes pp115–166 Edited by Inouye M.. New York: Wiley;
    [Google Scholar]
  50. Miyagishima S. Y., Wolk C. P., Osteryoung K. W.. 2005; Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol Microbiol56:126–143
    [Google Scholar]
  51. Mori S., Castoreno A., Mulligan M. E., Lammers P. J.. 2003; Nitrogen status modulates the expression of RNA-binding proteins in cyanobacteria. FEMS Microbiol Lett227:203–210
    [Google Scholar]
  52. Neidhardt F. C., VanBogelen R. A.. 2000; Proteomic analysis of bacterial stress responses. In Bacterial Stress Responses pp445–452 Edited by Storz G., Hengge-Aronis R. Washington, DC: ASM Press;
    [Google Scholar]
  53. Nimura K., Takahashi H., Yoshikawa H.. 2001; Characterization of the dnaK multigene family in the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol183:1320–1328
    [Google Scholar]
  54. Pallen M., Chaudhuri R., Khan A.. 2002; Bacterial FHA domains: neglected players in the phospho-threonine signalling game?. Trends Microbiol10:556–563
    [Google Scholar]
  55. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y.. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol111:1–61
    [Google Scholar]
  56. Rodnina M. V., Stark H., Savelsbergh A., Wieden H. J., Mohr D., Matassova N. B., Peske F., Daviter T., Gualerzi C. O., Wintermeyer W.. 2000; GTPases mechanisms and functions of translation factors on the ribosome. Biol Chem381:377–387
    [Google Scholar]
  57. Sauer J., Görl, M., Forchhammer K.. 1999; Nitrogen starvation in Synechococcus PCC 7942: involvement of glutamine synthetase and NtcA in phycobiliprotein degradation and survival. Arch Microbiol172:247–255
    [Google Scholar]
  58. Sauer J., Schreiber U., Schmid R., Volker U., Forchhammer K.. 2001; Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiol126:233–243
    [Google Scholar]
  59. Sherratt D. J.. 2003; Bacterial chromosome dynamics. Science301:780–785
    [Google Scholar]
  60. Shevchenko A., Chernushevich I., Wilm M., Mann M.. 2000; De novo peptide sequencing by nanoelectrospray tandem mass spectrometry using triple quadrupole and quadrupole/time-of-flight instruments. Methods Mol Biol146:1–16
    [Google Scholar]
  61. Shih Y. L., Le T., Rothfield L.. 2003; Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci U S A100:7865–7870
    [Google Scholar]
  62. Sikorski R. S., Boguski M. S., Goebl M., Hieter P.. 1990; A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell60:307–317
    [Google Scholar]
  63. Slabas A. R., Suzuki I., Murata M., Simon W. J., Hall J. J.. 2006; Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase34 gene. Proteomics6:845–864
    [Google Scholar]
  64. Soballe B., Poole R. K.. 1999; Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology145:1817–1830
    [Google Scholar]
  65. Thomaides H. B., Freeman M., El Karoui M., Errington J.. 2001; Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev15:1662–1673
    [Google Scholar]
  66. van den Ent F., Amos L. A., Lowe J.. 2001; Prokaryotic origin of the actin cytoskeleton. Nature413:39–44
    [Google Scholar]
  67. Vitha S., Froehlich J. E., Koksharova O. A., Pyke K. A., van Erp H., Osteryoug K. W.. 2003; ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell15:1918–1933
    [Google Scholar]
  68. Wachi M., Matsuhashi M.. 1989; Negative control of cell division by mreB , a gene that functions in determining the rod shape of Escherichia coli cells. J Bacteriol171:3123–3127
    [Google Scholar]
  69. Wachi M., Doi M., Tamaki S., Park W., Nakajima-Iijima S., Matsuhashi M.. 1987; Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli . J Bacteriol169:4935–4940
    [Google Scholar]
  70. Wood Z. A., Schroder E., Robin Harris J., Poole L. B.. 2003; Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci28:32–40
    [Google Scholar]
  71. Yalowitz J. A., Jayaram H. N.. 2000; Molecular targets of guanine nucleotides in differentiation, proliferation and apoptosis. Anticancer Res20:2329–2338
    [Google Scholar]
  72. Yan J. X., Wait R., Berkelman T., Harry R. A., Westbrook J. A., Wheeler C. H., Dunn M. J.. 2000; A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis21:3666–3672
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007039-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007039-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error