1887

Abstract

can survive pH 2 acid stress by using several acid resistance systems. The most efficient of these employs glutamate decarboxylase (GadA/GadB) to consume protons, and an antiporter (GadC) to exchange the intracellular decarboxylation product for external glutamic acid. Expression of the essential transcriptional activator of this system, GadE, is controlled by several regulators in a hierarchical fashion. In this study, two additional activators have been identified. The AraC-family regulators GadX and GadW, previously found to activate , are now shown to directly activate expression, which, in turn, activates the genes. results using and show that these regulators actually have little direct effect on and promoters. The numerous induction pathways converge on a 798 bp control region situated upstream of the promoter region. Deletions of this control region exposed the region between −798 and −360 nt (relative to the translational start) to be required for maximum expression in Luria–Bertani (LB) medium and to be the primary focus of GadX and GadW control. The GadE protein itself, which binds to three GAD box sequences present between −233 and −42 nt, helped activate GadE expression in LB, but only when the −798 to −360 region was absent. These regulatory regions and proteins appear to integrate a variety of physiological signals that forecast a need for GadE-dependent gene expression and acid resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007005-0
2007-08-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2584.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007005-0&mimeType=html&fmt=ahah

References

  1. Bordi, C., Theraulaz, L., Mejean, V. & Jourlin-Castelli, C. ( 2003; ). Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol Microbiol 48, 211–223.[CrossRef]
    [Google Scholar]
  2. Bullas, L. R. & Ryu, J.-I. ( 1983; ). Salmonella typhimurium LT2 strains which are r m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 156, 471–474.
    [Google Scholar]
  3. Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F. & Foster, J. W. ( 1999; ). Control of acid resistance in Escherichia coli. J Bacteriol 181, 3525–3535.
    [Google Scholar]
  4. Castanie-Cornet, M. P., Cam, K. & Jacq, A. ( 2006; ). RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 188, 4264–4270.[CrossRef]
    [Google Scholar]
  5. Curtiss, R., III, Porter, S. B., Munson, M., Tinge, S. A., Hassan, J. O., Gentry-Weeks, C. & Kelly, S. M. ( 1991; ). Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry. In Colonization Control of Human Bacterial Enteropathogens in Poultry, pp. 169–198. Edited by L. C. Blankenship, J. H. S. Bailey, N. A. Cox, N. J. Stern & R. J. Meinersmann. New York: Academic Press.
  6. Dahan, S., Knutton, S., Shaw, R. K., Crepin, V. F., Dougan, G. & Frankel, G. ( 2004; ). Transcriptome of enterohemorrhagic Escherichia coli O157 adhering to eukaryotic plasma membranes. Infect Immun 72, 5452–5459.[CrossRef]
    [Google Scholar]
  7. De Biase, D., Tramonti, A., Bossa, F. & Visca, P. ( 1999; ). The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32, 1198–1211.[CrossRef]
    [Google Scholar]
  8. Elliott, T. ( 1992; ). A method for constructing single-copy lac fusions in Salmonella typhimurium and its application to the hemA-prfA operon. J Bacteriol 174, 245–253.
    [Google Scholar]
  9. Foster, J. W. ( 2004; ). Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2, 898–907.[CrossRef]
    [Google Scholar]
  10. Giangrossi, M., Zattoni, S., Tramonti, A., De Biase, D. & Falconi, M. ( 2005; ). Antagonistic role of H-NS and GadX in the regulation of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. J Biol Chem 280, 21498–21505.[CrossRef]
    [Google Scholar]
  11. Giannella, R. A., Broitman, S. A. & Zamcheck, N. ( 1973; ). Influence of gastric acidity on bacterial and parasitic enteric infections. A perspective. Ann Intern Med 78, 271–276.[CrossRef]
    [Google Scholar]
  12. Gong, S., Richard, H. & Foster, J. W. ( 2003; ). YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185, 4402–4409.[CrossRef]
    [Google Scholar]
  13. Gong, S., Ma, Z. & Foster, J. W. ( 2004; ). The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol Microbiol 54, 948–961.[CrossRef]
    [Google Scholar]
  14. Gorden, J. & Small, P. L. C. ( 1993; ). Acid resistance in enteric bacteria. Infect Immun 61, 364–367.
    [Google Scholar]
  15. Guzman, L.-M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  16. Hommais, F., Krin, E., Laurent-Winter, C., Soutourina, O., Malpertuy, A., Le Caer, J. P., Danchin, A. & Bertin, P. ( 2001; ). Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40, 20–36.[CrossRef]
    [Google Scholar]
  17. Hommais, F., Krin, E., Coppee, J. Y., Lacroix, C., Yeramian, E., Danchin, A. & Bertin, P. ( 2004; ). GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150, 61–72.[CrossRef]
    [Google Scholar]
  18. Iyer, R., Williams, C. & Miller, C. ( 2003; ). Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185, 6556–6561.[CrossRef]
    [Google Scholar]
  19. Lin, J., Lee, I. S., Frey, J., Slonczewski, J. L. & Foster, J. W. ( 1995; ). Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri and Escherichia coli. J Bacteriol 177, 4097–4104.
    [Google Scholar]
  20. Lin, J., Smith, M. P., Chapin, K. C., Baik, H. S., Bennett, G. N. & Foster, J. W. ( 1996; ). Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62, 3094–3100.
    [Google Scholar]
  21. Ma, Z., Richard, H., Tucker, D. L., Conway, T. & Foster, J. W. ( 2002; ). Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184, 7001–7012.[CrossRef]
    [Google Scholar]
  22. Ma, Z., Richard, H. & Foster, J. W. ( 2003a; ). pH-dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185, 6852–6859.[CrossRef]
    [Google Scholar]
  23. Ma, Z., Gong, S., Richard, H., Tucker, D. L., Conway, T. & Foster, J. W. ( 2003b; ). GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49, 1309–1320.[CrossRef]
    [Google Scholar]
  24. Ma, Z., Masuda, N. & Foster, J. W. ( 2004; ). Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 186, 7378–7389.[CrossRef]
    [Google Scholar]
  25. Masuda, N. & Church, G. M. ( 2002; ). Escherichia coli gene expression responsive to levels of the response regulator EvgA. J Bacteriol 184, 6225–6234.[CrossRef]
    [Google Scholar]
  26. Masuda, N. & Church, G. M. ( 2003; ). Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48, 699–712.[CrossRef]
    [Google Scholar]
  27. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Opdyke, J. A., Kang, J. G. & Storz, G. ( 2004; ). GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186, 6698–6705.[CrossRef]
    [Google Scholar]
  29. Price, S. B., Wright, J. C., DeGraves, F. J., Castanie-Cornet, M. P. & Foster, J. W. ( 2004; ). Acid resistance systems required for survival of Escherichia coli O157 : H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol 70, 4792–4799.[CrossRef]
    [Google Scholar]
  30. Richard, H. T. & Foster, J. W. ( 2003; ). Acid resistance in Escherichia coli. Adv Appl Microbiol 52, 167–186.
    [Google Scholar]
  31. Richard, H. & Foster, J. W. ( 2004; ). Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186, 6032–6041.[CrossRef]
    [Google Scholar]
  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Shin, S., Castanie-Cornet, M. P., Foster, J. W., Crawford, J. A., Brinkley, C. & Kaper, J. B. ( 2001; ). An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol Microbiol 41, 1133–1150.
    [Google Scholar]
  34. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96.[CrossRef]
    [Google Scholar]
  35. Smith, J. L. ( 2003; ). The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J Food Prot 66, 1292–1303.
    [Google Scholar]
  36. Smith, D. K., Kassam, T., Singh, B. & Elliott, J. F. ( 1992; ). Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174, 5820–5826.
    [Google Scholar]
  37. Tatsuno, I., Nagano, K., Taguchi, K., Rong, L., Mori, H. & Sasakawa, C. ( 2003; ). Increased adherence to Caco-2 cells caused by disruption of the yhiE and yhiF genes in enterohemorrhagic Escherichia coli O157 : H7. Infect Immun 71, 2598–2606.[CrossRef]
    [Google Scholar]
  38. Tramonti, A., Visca, P., De Canio, M., Falconi, M. & De Biase, D. ( 2002; ). Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184, 2603–2613.[CrossRef]
    [Google Scholar]
  39. Tramonti, A., De Canio, M., Bossa, F. & De Biase, D. ( 2003; ). Stability and oligomerization of recombinant GadX, a transcriptional activator of the Escherichia coli glutamate decarboxylase system. Biochim Biophys Acta 1647, 376–380.[CrossRef]
    [Google Scholar]
  40. Tramonti, A., De Canio, M., Delany, I., Scarlato, V. & De Biase, D. ( 2006; ). Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. J Bacteriol 188, 8118–8127.[CrossRef]
    [Google Scholar]
  41. Tucker, D. L., Tucker, N. & Conway, T. ( 2002; ). Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184, 6551–6558.[CrossRef]
    [Google Scholar]
  42. Tucker, D. L., Tucker, N., Ma, Z., Foster, J. W., Miranda, R. L., Cohen, P. S. & Conway, T. ( 2003; ). Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol 185, 3190–3201.[CrossRef]
    [Google Scholar]
  43. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge, R. ( 2005; ). Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187, 1591–1603.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007005-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007005-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error