1887

Abstract

SaPIs are a family of homologous phage-related pathogenicity islands in staphylococci that carry superantigen and other virulence genes, and are responsible for a wide variety of superantigen-related diseases. SaPIs are induced to excise and replicate by particular staphylococcal phages and are encapsidated in infectious, small-headed, phage-like particles, which are transmitted at very high frequency among staphylococcal strains and species. SaPI2 is a prototypical member of this family that was identified in a typical menstrual toxic shock syndrome (TSS) strain of , the so-called Harrisburg strain, and found to be mobilizable by typing phage 80. Most menstrual TSS strains belong to a highly uniform group III clone of electrophoretic type (ET) 41, and this study was undertaken to determine whether such strains typically carry SaPI2, and whether it has spread beyond the ET41 clone. We report here the complete sequence of SaPI2, describe its relation to other known SaPIs, and show that it, or a very similar element, is carried by most ET41 strains but that it has disseminated to other strains that have also been implicated in TSS. We show additionally, that SaPIs are widespread among the staphylococci and that most TSS strains carry two or more, including SaPI2.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006932-0
2007-10-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3235.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006932-0&mimeType=html&fmt=ahah

References

  1. Altemeier, W. A., Lewis, S. A., Schlievert, P. M., Bergdoll, M. S., Bjornson, H. S., Staneck, J. L. & Crass, B. A. ( 1982; ). Staphylococcus aureus associated with toxic shock syndrome. Ann Intern Med 96, 978–982.[CrossRef]
    [Google Scholar]
  2. Baba, T., Takeuchi, F., Kuroda, M., Yuzawa, H., Aoki, K., Oguchi, A., Nagai, Y., Iwama, N., Asano, K. & other authors ( 2002; ). Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827.[CrossRef]
    [Google Scholar]
  3. Bergdoll, M. S. & Schlievert, P. M. ( 1984; ). Toxic shock syndrome toxin. Lancet 2, 691
    [Google Scholar]
  4. Campbell, A. M. ( 1969; ). Episomes. New York: Harper & Row.
  5. Chu, M. C., Kreiswirth, B. N., Pattee, P. A., Novick, R. P., Melish, M. E. & James, J. F. ( 1988; ). Association of toxic shock toxin-1 determinant with a heterologous insertion at multiple loci in the Staphylococcus aureus chromosome. Infect Immun 56, 2702–2708.
    [Google Scholar]
  6. Diep, B. A., Gill, S. R., Chang, R. F., Phan, T., Chen, J., Davidson, M., Lin, F., Lin, J., Carleton, H. & Mongodin, E. ( 2006; ). Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet 367, 731–739.[CrossRef]
    [Google Scholar]
  7. Fitzgerald, J. R., Monday, S. R., Foster, T. J., Bohach, G. A., Hartigan, P. J., Meaney, W. J. & Smyth, C. J. ( 2001; ). Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol 183, 63–70.[CrossRef]
    [Google Scholar]
  8. Holden, M. T., Feil, E. J., Lindsay, J. A., Peacock, S. J., Day, N. P., Enright, M. C., Foster, T. J., Moore, C. E., Hurst, L. & other authors ( 2004; ). Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101, 9786–9791.[CrossRef]
    [Google Scholar]
  9. Ji, G., Beavis, R. & Novick, R. P. ( 1997; ). Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030.[CrossRef]
    [Google Scholar]
  10. Jones, C. L. & Khan, S. A. ( 1986; ). Nucleotide sequence of the enterotoxin B gene from Staphylococcus aureus. J Bacteriol 166, 29–33.
    [Google Scholar]
  11. Kreiswirth, B. N., O'Reilly, M. & Novick, R. P. ( 1984; ). Genetic characterization and cloning of the toxic shock syndrome exotoxin. Surv Synth Pathol Res 3, 73–82.
    [Google Scholar]
  12. Kreiswirth, B. N., Projan, S. J., Schlievert, P. M. & Novick, R. P. ( 1989; ). Toxic shock syndrome toxin 1 is encoded by a variable genetic element. Rev Infect Dis 11 (Suppl. 1), S83–S88 (discussion S88–S89).[CrossRef]
    [Google Scholar]
  13. Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki, K. & other authors ( 2001; ). Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.[CrossRef]
    [Google Scholar]
  14. Kuroda, M., Yamashita, A., Hirakawa, H., Kumano, M., Morikawa, K., Higashide, M., Maruyama, A., Inose, Y., Matoba, K. & other authors ( 2005; ). Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci U S A 102, 13272–13277.[CrossRef]
    [Google Scholar]
  15. Kwan, T., Liu, J., DuBow, M., Gros, P. & Pelletier, J. ( 2005; ). The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102, 5174–5179.[CrossRef]
    [Google Scholar]
  16. Lindsay, J. A., Kurepina, N. & Novick, R. P. ( 1997; ). Clinical isolates of Staphylococcus aureus encode TSST-1 on genetic elements related to S. aureus pathogenicity island-1 (SaPI1). In European Conference on Toxic Shock Syndrome. Royal Society of Medicine, London, UK: Royal Society of Medicine.
  17. Lindsay, J. A., Ruzin, A., Ross, H. F., Kurepina, N. & Novick, R. P. ( 1998; ). The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29, 527–543.[CrossRef]
    [Google Scholar]
  18. Maiques, E., Úbeda, C., Tormo, M. A., Ferrer, M. D., Lasa, I., Novick, R. P. & Penadés, J. R. ( 2007; ).Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer J Bacteriol 189, 5608–5616.[CrossRef]
    [Google Scholar]
  19. Musser, J. M., Schlievert, P. M., Chow, A. W., Ewan, P., Kreiswirth, B. N., Rosdahl, V. T., Naidu, A. S., Witte, W. & Selander, R. K. ( 1990; ). A single clone of Staphylococcus aureus causes the majority of cases of toxic shock syndrome. Proc Natl Acad Sci U S A 87, 225–229.[CrossRef]
    [Google Scholar]
  20. Novick, R. P. & Subedi, A. ( 2007; ). The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy 93, 42–47.
    [Google Scholar]
  21. Novick, R. P., Schlievert, P. & Ruzin, A. ( 2001; ). Pathogenicity and resistance islands of staphylococci. Microbes Infect 3, 585–594.[CrossRef]
    [Google Scholar]
  22. O'Neill, A. J., Larsen, A. R., Skov, R., Henriksen, A. S. & Chopra, I. ( 2007; ). Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J Clin Microbiol 45, 1505–1510.[CrossRef]
    [Google Scholar]
  23. Ruzin, A., Lindsay, J. & Novick, R. P. ( 2001; ). Molecular genetics of SaPI1 – a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41, 365–377.[CrossRef]
    [Google Scholar]
  24. Sato, H., Watanabe, T., Murata, Y., Ohtake, A., Nakamura, M., Aizawa, C., Saito, H. & Maehara, N. ( 1999; ). New exfoliative toxin produced by a plasmid-carrying strain of Staphylococcus hyicus. Infect Immun 67, 4014–4018.
    [Google Scholar]
  25. Takeuchi, F., Watanabe, S., Baba, T., Yuzawa, H., Ito, T., Morimoto, Y., Kuroda, M., Cui, L., Takahashi, M. & other authors ( 2005; ). Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187, 7292–7308.[CrossRef]
    [Google Scholar]
  26. Todd, J., Fishaut, M., Kapral, F. & Welch, T. ( 1978; ). Toxic-shock syndrome associated with phage-group-I staphylococci. Lancet 2, 1116–1118.
    [Google Scholar]
  27. Ubeda, C., Tormo, M. A., Cucarella, C., Trotonda, P., Foster, T. J., Lasa, I. & Penades, J. R. ( 2003; ). Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Mol Microbiol 49, 193–210.[CrossRef]
    [Google Scholar]
  28. Ubeda, C., Maiques, E., Novick, R. P. & Penades, J. R. ( 2007a; ). SaPI operon I is required for SaPI packaging and is regulated by LexA. Mol Microbiol 65, 41–50.[CrossRef]
    [Google Scholar]
  29. Ubeda, C., Penades, J. R. & Novick, R. P. ( 2007b; ). A pathogenicity island replicon in Staphylococcus aureus replicates as an unstable plasmid. Proc Natl Acad Sci U S A 65 (in press).
    [Google Scholar]
  30. Ye, Z.-H. & Lee, C. ( 1993; ). Cloning, sequencing, and genetic characterization of regulatory genes, rinA and rinB, required for the activation of staphylococcal phage phi11 int expression. J Bacteriol 175, 1095–1102.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006932-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006932-0
Loading

Data & Media loading...

Supplements

RV digest, probe.

PDF

Strains and digests as indicated, probe.

PDF

RV digest, -I probe.

PDF

RV digest, -II probe.

PDF

RV digest, -III probe.

PDF

RV digest, -IV probe.

PDF

RV digest, -V probe.

PDF

Alignment of the right ends of SaPI2 and SaPI4. Homologous regions are shown (shaded dark grey) where recombinational exchange could insert into SaPI4, which lacks identifiable virulence genes.

PDF

core sequences at the SaPI-chromosomal junctions at position 44' (see Fig. 4 in the paper). Single nucleotide substitutions occur at positions 1 and 16 and there are single nucleotide mismatches at positions 1 and 13 in the SaRIfusB junctions, and at position 16 in the SaPI6Δ junctions. These nucleotides are in italic type.

PDF

Strains used in this study.

PDF

List of clinical TSS strains.

PDF

Oligonucleotide primers.

PDF

SaPI2 features and PGs.

PDF

Features of clinical TSS strains.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error