1887

Abstract

The evolution of bacterial pathogens from commensal organisms involves virulence gene acquisition followed by pathoadaptation to the new host, including inactivation of antivirulence loci (AVL). AVL are core ancestral genes whose expression is incompatible with the pathogenic lifestyle. Previous studies identified (encoding lysine decarboxylase) as an AVL of spp. In this study, AVL of were identified by examining a phenotypic difference from its non-pathogenic ancestor, . Unlike most strains, spp. are nicotinic acid auxotrophs, the pathway for the synthesis of NAD being uniformly defective. In , this defect is due to alterations in the and/or genes encoding the enzyme complex that converts -aspartate to quinolinate, a precursor to NAD synthesis. Quinolinate was found to inhibit invasion and cell-to-cell spread of 5a and its ability to induce polymorphonuclear neutrophil transepithelial migration. Virulence of other species was also inhibited by quinolinate. Introduction of functional and genes from K-12 into 5a restored its ability to synthesize quinolinate but also resulted in strong attenuation of virulence in this strain. The results define and as AVL in and validate the concept of pathoadaptive evolution of bacteria from commensal ancestors by inactivation of AVL. They also suggest that studies focusing on this form of bacterial evolution can identify novel inhibitors of virulence in other bacterial pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006916-0
2007-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2363.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006916-0&mimeType=html&fmt=ahah

References

  1. Ahmed, Z. U., Sarker, M. R. & Sack, D. A. ( 1988; ). Nutritional requirements of Shigellae for growth in a minimal medium. Infect Immun 56, 1007–1009.
    [Google Scholar]
  2. Andrews, G. P., Hromockyj, A. E., Coker, C. & Maurelli, A. T. ( 1991; ). Two novel virulence loci, mxiA and mxiB, in Shigella flexneri 2a facilitate excretion of invasion plasmid antigens. Infect Immun 59, 1997–2005.
    [Google Scholar]
  3. Bahrani, F. K., Sansonetti, P. J. & Parsot, C. ( 1997; ). Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect Immun 65, 4005–4010.
    [Google Scholar]
  4. Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. ( 1989; ). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A 86, 3867–3871.[CrossRef]
    [Google Scholar]
  5. Day, W. A., Jr, Fernandez, R. E. & Maurelli, A. T. ( 2001; ). Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect Immun 69, 7471–7480.[CrossRef]
    [Google Scholar]
  6. Enninga, J., Mounier, J., Sansonetti, P. & Tran Van, N. G. ( 2005; ). Secretion of type III effectors into host cells in real time. Nat Methods 2, 959–965.[CrossRef]
    [Google Scholar]
  7. Fasano, A., Noriega, F. R., Liao, F. M., Wang, W. & Levine, M. M. ( 1997; ). Effect of Shigella enterotoxin 1 (ShET1) on rabbit intestine in vitro and in vivo. Gut 40, 505–511.[CrossRef]
    [Google Scholar]
  8. Fernandez, I. M., Silva, M., Schuch, R., Walker, W. A., Siber, A. M., Maurelli, A. T. & McCormick, B. A. ( 2001; ). Cadaverine prevents the escape of Shigella flexneri from the phagolysosome: a connection between bacterial dissemination and neutrophil transepithelial signaling. J Infect Dis 184, 743–753.[CrossRef]
    [Google Scholar]
  9. Flachmann, R., Kunz, N., Seifert, J., Gutlich, M., Wientjes, F. J., Laufer, A. & Gassen, H. G. ( 1988; ). Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB. Eur J Biochem 175, 221–228.[CrossRef]
    [Google Scholar]
  10. Formal, S. B., Dammin, G. J., Labrec, E. H. & Schneider, H. ( 1958; ). Experimental Shigella infections: characteristics of a fatal infection produced in guinea pigs. J Bacteriol 75, 604–610.
    [Google Scholar]
  11. Gemski, P., Formal, S. B. & Baron, L. S. ( 1971; ). Identification of two widely separated loci conferring nicotinic acid dependence on wild-type Shigella flexneri 2a. Infect Immun 3, 500–503.
    [Google Scholar]
  12. Groisman, E. A. & Ochman, H. ( 1996; ). Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87, 791–794.[CrossRef]
    [Google Scholar]
  13. Gulig, P. A. & Curtiss, R., III ( 1987; ). Plasmid-associated virulence of Salmonella typhimurium. Infect Immun 55, 2891–2901.
    [Google Scholar]
  14. Harris, J. R., Wachsmuth, I. K., Davis, B. R. & Cohen, M. L. ( 1982; ). High-molecular-weight plasmid correlates with Escherichia coli enteroinvasiveness. Infect Immun 37, 1295–1298.
    [Google Scholar]
  15. Hromockyj, A. E. & Maurelli, A. T. ( 1989; ). Identification of Shigella invasion genes by isolation of temperature-regulated inv : lacZ operon fusions. Infect Immun 57, 2963–2970.
    [Google Scholar]
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  17. Lee, C. A. ( 1996; ). Pathogenicity islands and the evolution of bacterial pathogens. Infect Agents Dis 5, 1–7.
    [Google Scholar]
  18. Mantis, N. J. & Sansonetti, P. J. ( 1996; ). The nadB gene of Salmonella typhimurium complements the nicotinic acid auxotrophy of Shigella flexneri. Mol Gen Genet 252, 626–629.
    [Google Scholar]
  19. Maurelli, A. T. ( 2007; ). Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol Lett 267, 1–8.[CrossRef]
    [Google Scholar]
  20. Maurelli, A. T., Blackmon, B. & Curtiss, R., III ( 1984; ). Loss of pigmentation in Shigella flexneri 2a is correlated with loss of virulence and virulence-associated plasmid. Infect Immun 43, 397–401.
    [Google Scholar]
  21. Maurelli, A. T., Fernandez, R. E., Bloch, C. A., Rode, C. K. & Fasano, A. ( 1998; ). ‘Black holes’ and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci U S A 95, 3943–3948.[CrossRef]
    [Google Scholar]
  22. McCormick, B. A., Siber, A. M. & Maurelli, A. T. ( 1998; ). Requirement of the Shigella flexneri virulence plasmid in the ability to induce trafficking of neutrophils across polarized monolayers of the intestinal epithelium. Infect Immun 66, 4237–4243.
    [Google Scholar]
  23. McCormick, B. A., Fernandez, M. I., Siber, A. M. & Maurelli, A. T. ( 1999; ). Inhibition of Shigella flexneri-induced transepithelial migration of polymorphonuclear leucocytes by cadaverine. Cell Microbiol 1, 143–155.[CrossRef]
    [Google Scholar]
  24. Menard, R., Sansonetti, P. J. & Parsot, C. ( 1993; ). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175, 5899–5906.
    [Google Scholar]
  25. Mills, J. A., Buysse, J. M. & Oaks, E. V. ( 1988; ). Shigella flexneri invasion plasmid antigens B and C: epitope location and characterization with monoclonal antibodies. Infect Immun 56, 2933–2941.
    [Google Scholar]
  26. Mounier, J., Bahrani, F. K. & Sansonetti, P. J. ( 1997; ). Secretion of Shigella flexneri Ipa invasins on contact with epithelial cells and subsequent entry of the bacterium into cells are growth stage dependent. Infect Immun 65, 774–782.
    [Google Scholar]
  27. Nordfelth, R., Kauppi, A. M., Norberg, H. A., Wolf-Watz, H. & Elofsson, M. ( 2005; ). Small-molecule inhibitors specifically targeting type III secretion. Infect Immun 73, 3104–3114.[CrossRef]
    [Google Scholar]
  28. Oaks, E. V., Wingfield, M. E. & Formal, S. B. ( 1985; ). Plaque formation by virulent Shigella flexneri. Infect Immun 48, 124–129.
    [Google Scholar]
  29. Parkos, C. A., Delp, C., Arnaout, M. A. & Madara, J. L. ( 1991; ). Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. J Clin Invest 88, 1605–1612.[CrossRef]
    [Google Scholar]
  30. Parsot, C., Menard, R., Gounon, P. & Sansonetti, P. J. ( 1995; ). Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol Microbiol 16, 291–300.[CrossRef]
    [Google Scholar]
  31. Penfound, T. & Foster, J. W. ( 1996; ). Biosynthesis and recycling of NAD. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 721–730. Edited by F. C. Neidhart and others. Washington, DC: American Society for Microbiology.
  32. Pupo, G. M., Lan, R. & Reeves, P. R. ( 2000; ). Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci U S A 97, 10567–10572.[CrossRef]
    [Google Scholar]
  33. Sandlin, R. C., Goldberg, M. B. & Maurelli, A. T. ( 1996; ). Effect of O side-chain length and composition on the virulence of Shigella flexneri 2a. Mol Microbiol 22, 63–73.[CrossRef]
    [Google Scholar]
  34. Sansonetti, P. J., Kopecko, D. J. & Formal, S. B. ( 1982; ). Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun 35, 852–860.
    [Google Scholar]
  35. Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T. & Mounier, J. ( 1986; ). Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun 51, 461–469.
    [Google Scholar]
  36. Sansonetti, P. J., Tran, V. N. & Egile, C. ( 1999; ). Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clin Infect Dis 28, 466–475.[CrossRef]
    [Google Scholar]
  37. Schuch, R., Sandlin, R. C. & Maurelli, A. T. ( 1999; ). A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Mol Microbiol 34, 675–689.[CrossRef]
    [Google Scholar]
  38. Sokurenko, E. V., Hasty, D. L. & Dykhuizen, D. E. ( 1999; ). Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol 7, 191–195.[CrossRef]
    [Google Scholar]
  39. Straley, S. C., Plano, G. V., Skrzypek, E., Haddix, P. L. & Fields, K. A. ( 1993; ). Regulation by Ca2+ in the Yersinia low-Ca2+ response. Mol Microbiol 8, 1005–1010.[CrossRef]
    [Google Scholar]
  40. Zurawski, D. V., Mitsuhata, C., Mumy, K. L., McCormick, B. A. & Maurelli, A. T. ( 2006; ). OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence. Infect Immun 74, 5964–5976.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006916-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006916-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error