1887

Abstract

Tyrosinase activity and melanin synthesis in the marine bacterium in media with very low copper concentrations are dependent on the presence of a protein (PpoB2) that functions as a chaperone to deliver copper to tyrosinase (PpoB1). Under these conditions, mutants in (such as strain T105) produce PpoB1 as an apoenzyme that can be reconstituted to the active holoenzyme by the addition of cupric ions to cell extracts. To study PpoB2 functionality, a system was developed for genetic complementation in Using this approach, melanin synthesis was restored in strain T105 when a wild-type copy of was introduced. PpoB2 is a novel protein since it is believed to be the first to be described that contains several motifs similar to metal binding motifs present separately in other types of copper-related protein. At least three motifs, a His-rich N-terminal region, and the short CxxxC and MxxxMM sequences, are essential for the functionality of PpoB2, since site-directed mutagenesis of these motifs resulted in a non-functional protein. In addition, it was demonstrated that PpoB2 is a membrane copper transporter putatively participating in the delivery of this ion specifically to the tyrosinase of and not to a second copper oxidase showing laccase activity that this micro-organism also expresses. PpoB2 has similarities with the COG5486 group encoding putative transmembrane metal binding proteins, and is believed to be the first protein in this group to be experimentally characterized. It may constitute the first example of a novel type of protein involved in copper trafficking in bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006833-0
2007-07-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2241.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006833-0&mimeType=html&fmt=ahah

References

  1. Alexeyev, M. F. & Shokolenko, I. N. ( 1995; ). Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of Gram-negative bacteria. Gene 160, 59–62.[CrossRef]
    [Google Scholar]
  2. Arai, M., Mitsuke, H., Ikeda, M., Xia, J.-X., Kikuchi, T., Satake, M. & Shimizu, T. ( 2004; ). ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res 32, W390–W393.[CrossRef]
    [Google Scholar]
  3. Barceloux, D. G. ( 1999; ). Copper. J Toxicol Clin Toxicol 37, 217–230.[CrossRef]
    [Google Scholar]
  4. Battistoni, A., Pacello, F., Mazzetti, A. P., Capo, C., Kroll, J. S., Langford, P. R., Sansone, A., Donnarumma, G., Valenti, P. & Rotilio, G. ( 2001; ). A histidine-rich metal binding domain at the N terminus of Cu,Zn-superoxide dismutases from pathogenic bacteria: a novel strategy for metal chaperoning. J Biol Chem 276, 30315–30325.[CrossRef]
    [Google Scholar]
  5. Beltramini, M. & Lerch, K. ( 1982; ). Copper transfer between Neurospora copper metallothionein and type 3 copper apoproteins. FEBS Lett 142, 219–222.[CrossRef]
    [Google Scholar]
  6. Borrelly, G. P., Blindauer, C. A., Schmid, R., Butler, C. S., Cooper, C. E., Harvey, I., Sadler, P. J. & Robinson, N. J. ( 2004; ). A novel copper site in a cyanobacterial metallochaperone. Biochem J 378, 293–297.[CrossRef]
    [Google Scholar]
  7. Butler, A. ( 1998; ). Acquisition and utilization of transition metal ions by marine organisms. Science 281, 207–210.[CrossRef]
    [Google Scholar]
  8. Chen, L.-Y., Leu, W.-M., Wang, K.-T. & Wu Lee, Y.-H. ( 1992; ). Copper transfer and activation of the Streptomyces apotyrosinase are mediated through a complex formation between apotyrosinase and its trans-activator MelC1. J Biol Chem 267, 20100–20107.
    [Google Scholar]
  9. Chen, L. Y., Chen, M. Y., Leu, W. M., Tsai, T. Y. & Lee, Y. H. ( 1993; ). Mutational study of Streptomyces tyrosinase trans-activator MelC1. MelC1 is likely a chaperone for apotyrosinase. J Biol Chem 268, 18710–18716.
    [Google Scholar]
  10. Fernández, E., Sanchez-Amat, A. & Solano, F. ( 1999; ). Location and catalytic characteristics of a multipotent bacterial polyphenol oxidase. Pigment Cell Res 12, 331–339.[CrossRef]
    [Google Scholar]
  11. Gaetke, L. M. & Chow, C. K. ( 2003; ). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147–163.[CrossRef]
    [Google Scholar]
  12. Gardy, J. L., Laird, M. R., Chen, F., Rey, S., Walsh, C. J., Ester, M. & Brinkman, F. S. L. ( 2005; ). PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21, 617–623.[CrossRef]
    [Google Scholar]
  13. Harrison, M. D., Jones, C. E., Solioz, M. & Dameron, C. T. ( 2000; ). Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25, 29–32.[CrossRef]
    [Google Scholar]
  14. Hernández-Romero, D., Solano, F. & Sanchez-Amat, A. ( 2005; ). Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl Environ Microbiol 71, 6808–6815.[CrossRef]
    [Google Scholar]
  15. Hirokawa, T., Boon-Chieng, S. & Mitaku, S. ( 1998; ). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379.[CrossRef]
    [Google Scholar]
  16. Karlin, K. D. ( 1993; ). Metalloenzymes, structural motifs, and inorganic models. Science 261, 701–708.[CrossRef]
    [Google Scholar]
  17. Lee, Y. H., Chen, B. F., Wu, S. Y., Leu, W. M., Lin, J. J., Chen, C. W. & Lo, S. C. ( 1988; ). A trans-acting gene is required for the phenotypic expression of a tyrosinase gene in Streptomyces. Gene 65, 71–81.[CrossRef]
    [Google Scholar]
  18. Lee, J., Pena, M. M., Nose, Y. & Thiele, D. J. ( 2002; ). Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277, 4380–4387.[CrossRef]
    [Google Scholar]
  19. Liaw, L. L. & Lee, Y. H. ( 1995; ). Histidine residues 102 and 117 of MelC1 play different roles in the chaperone function for Streptomyces apotyrosinase. Biochem Biophys Res Commun 214, 447–453.[CrossRef]
    [Google Scholar]
  20. López-Serrano, D., Sanchez-Amat, A. & Solano, F. ( 2002; ). Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea. Pigment Cell Res 15, 104–111.[CrossRef]
    [Google Scholar]
  21. López-Serrano, D., Solano, F. & Sanchez-Amat, A. ( 2004; ). Identification of an operon involved in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Gene 342, 179–187.[CrossRef]
    [Google Scholar]
  22. Lucas-Elío, P., Solano, F. & Sanchez-Amat, A. ( 2002; ). Regulation of polyphenol oxidase activities and melanin synthesis in Marinomonas mediterranea: Identification of ppoS, a gene encoding a sensor histidine kinase. Microbiology 148, 2457–2466.
    [Google Scholar]
  23. Mercado-Blanco, J., Garcia, F., Fernandez-Lopez, M. & Olivares, J. ( 1993; ). Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b: cloning, sequencing, and expression of the tyrosinase gene mepA. J Bacteriol 175, 5403–5410.
    [Google Scholar]
  24. Nittis, T., George, G. N. & Winge, D. R. ( 2001; ). Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J Biol Chem 276, 42520–42526.[CrossRef]
    [Google Scholar]
  25. Palmieri, G., Giardina, G., Bianco, C., Fontanella, B. & Sannita, G. ( 2000; ). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66, 920–924.[CrossRef]
    [Google Scholar]
  26. Puig, S. & Thiele, D. J. ( 2002; ). Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6, 171–180.[CrossRef]
    [Google Scholar]
  27. Puig, S., Lee, J., Lau, M. & Thiele, D. J. ( 2002; ). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277, 26021–26030.[CrossRef]
    [Google Scholar]
  28. Rosenzweig, A. C. ( 2002; ). Metallochaperones: bind and deliver. Chem Biol 9, 673–677.[CrossRef]
    [Google Scholar]
  29. Sanchez-Amat, A. & Solano, F. ( 1997; ). A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases. Biochem Biophys Res Commun 240, 787–792.[CrossRef]
    [Google Scholar]
  30. Sanchez-Amat, A., Lucas-Elio, P., Fernández, E., Garcia-Borrón, J. C. & Solano, F. ( 2001; ). Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547, 104–116.[CrossRef]
    [Google Scholar]
  31. Schaerlaekens, K., Schierova, M., Lammertyn, E., Geukens, N., Anne, J. & Van Mellaert, L. ( 2001; ). Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol 183, 6727–6732.[CrossRef]
    [Google Scholar]
  32. Solano, F. & Sanchez-Amat, A. ( 1999; ). Studies on the phylogenetic relationships of melanogenic marine bacteria: proposal of Marinomonas mediterranea sp. nov. Int J Syst Bacteriol 49, 1241–1246.[CrossRef]
    [Google Scholar]
  33. Solano, F., García, E., Pérez de Egea, E. & Sanchez-Amat, A. ( 1997; ). Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl Environ Microbiol 63, 3499–3506.
    [Google Scholar]
  34. Solano, F., Lucas-Elío, P., Fernández, E. & Sanchez-Amat, A. ( 2000; ). Marinomonas mediterranea MMB-1 transposon mutagenesis: isolation of a multipotent polyphenol oxidase mutant. J Bacteriol 182, 3754–3760.[CrossRef]
    [Google Scholar]
  35. Suzuki, H., Furusho, Y., Higashi, T., Ohnishi, Y. & Horinouchi, S. ( 2006; ). A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone. J Biol Chem 281, 824–833.[CrossRef]
    [Google Scholar]
  36. Swem, D. L., Swem, L. R., Setterdhal, A. & Bauer, C. E. ( 2005; ). Involvement of SenC in assembly of cytochrome c oxidase in Rhodobacter capsulatus. J Bacteriol 187, 8081–8087.[CrossRef]
    [Google Scholar]
  37. Tsai, T.-Y. & Lee, Y.-H. ( 1998; ). Roles of copper ligands in the activation and secretion of Streptomyces tyrosinase. J Biol Chem 273, 19243–19250.[CrossRef]
    [Google Scholar]
  38. van Geen, A. F. M. J. ( 1989; ). Trace metal sources for the Atlantic inflow to the Mediterranean Sea. PhD thesis, Massachusetts Institute of Technology. Bibliographic code: 1989PhDT-66V.
  39. Zhou, H. & Thiele, D. J. ( 2001; ). Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276, 20529–20535.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006833-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006833-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error