1887

Abstract

It has been known for many years that small fractions of persister cells resist killing in many bacterial colony–antimicrobial confrontations. These persisters are not believed to be mutants. Rather it has been hypothesized that they are phenotypic variants. Current models allow cells to switch in and out of the persister phenotype. Here, a different explanation is suggested for persistence, namely senescence. Using a mathematical model including age structure, it is shown that senescence provides a natural explanation for persistence-related phenomena, including the observations that the persister fraction depends on growth phase in batch culture and dilution rate in continuous culture.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006734-0
2007-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3623.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006734-0&mimeType=html&fmt=ahah

References

  1. Ackermann, M., Stearns, S. C. & Jenal, U. ( 2003; ). Senescence in a bacterium with asymmetric division. Science 300, 1920 [CrossRef]
    [Google Scholar]
  2. Ayati, B. P. & Dupont, T. F. ( 2002; ). Galerkin methods in age and space for a population model with nonlinear diffusion. SIAM J Numer Anal 40, 1064–1076.[CrossRef]
    [Google Scholar]
  3. Ayati, B. P. & Dupont, T. F. ( 2005; ). Convergence of a step-doubling Galerkin method for parabolic problems. Math Comp 74, 1053–1065.
    [Google Scholar]
  4. Ayati, B. P. & Klapper, I. ( 2007; ). A multiscale model of biofilm as a senescence-structured fluid. Multiscale Model Simul 6, 347–365.[CrossRef]
    [Google Scholar]
  5. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. ( 2004; ). Bacterial persistence as a phenotypic switch. Science 305, 1622–1625.[CrossRef]
    [Google Scholar]
  6. Barker, M. G. & Walmsley, R. M. ( 1999; ). Replicative ageing in the fission yeast, Schizosaccharomyces pombe. Yeast 15, 1511–1518.[CrossRef]
    [Google Scholar]
  7. Bigger, J. W. ( 1944; ). Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet ii, 497–500.
    [Google Scholar]
  8. Cogan, N. G. ( 2006; ). Effects of persister formation on bacterial response to dosing. J Theor Biol 238, 694–703.[CrossRef]
    [Google Scholar]
  9. Cushing, J. M. ( 1998; ). An Introduction to Structured Population Dynamics. Philadelphia: SIAM.
  10. Drury, W. J., Stewart, P. S. & Characklis, W. G. ( 1993; ). Transport of 1 μm latex particles in Pseudomonas aeruginosa biofilms. Biotechnol Bioeng 42, 111–117.[CrossRef]
    [Google Scholar]
  11. Gilbert, P., Collier, P. J. & Brown, M. R. W. ( 1990; ). Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34, 1865–1868.[CrossRef]
    [Google Scholar]
  12. Greenwood, D. & O'Grady, F. ( 1970; ). Trimodal response of Escherichia coli and Proteus mirabilis to penicillins. Nature 228, 457–458.[CrossRef]
    [Google Scholar]
  13. Harrison, J. J., Ceri, H., Roper, N. J., Badry, E. A., Sproule, K. M. & Turner, R. J. ( 2005; ). Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151, 3181–3195.[CrossRef]
    [Google Scholar]
  14. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. ( 2004A; ). Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230, 13–18.[CrossRef]
    [Google Scholar]
  15. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. ( 2004B; ). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186, 8172–8180.[CrossRef]
    [Google Scholar]
  16. Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. ( 2005; ). Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814.[CrossRef]
    [Google Scholar]
  17. Lewis, K. ( 2001; ). Riddle of biofilm resistance. Antimicrob Agents Chemother 45, 999–1007.[CrossRef]
    [Google Scholar]
  18. Lotka, A. J. ( 1907; ). Studies on the mode of growth of material aggregates. Am J Sci 24, 141–158.
    [Google Scholar]
  19. McDermott, W. ( 1958; ). Microbial persistence. Yale J Biol Med 30, 257–291.
    [Google Scholar]
  20. McKendrick, A. G. ( 1926; ). Applications of mathematics to medical problems. Proc Edin Math Soc 44, 98–130.
    [Google Scholar]
  21. Mortimer, R. K. & Johnston, J. R. ( 1959; ). Life span of individual yeast cells. Nature 183, 1751–1752.[CrossRef]
    [Google Scholar]
  22. Moyed, H. S. & Bertrand, K. P. ( 1983; ). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155, 768–775.
    [Google Scholar]
  23. Nystrom, T. ( 2005; ). Bacterial senescence, programmed death, and premeditated sterility. ASM News 71, 363–369.
    [Google Scholar]
  24. Okabe, S., Yasuda, T. & Watanabe, Y. ( 1997; ). Uptake and release of inert fluorescence particles by mixed population biofilms. Biotechnol Bioeng 53, 459–469.[CrossRef]
    [Google Scholar]
  25. Roberts, M. E. & Stewart, P. S. ( 2004; ). Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrob Agents Chemother 48, 48–52.[CrossRef]
    [Google Scholar]
  26. Roberts, M. E. & Stewart, P. S. ( 2005; ). Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151, 75–80.[CrossRef]
    [Google Scholar]
  27. Spoering, A. L. & Lewis, K. ( 2001; ). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183, 6746–6751.[CrossRef]
    [Google Scholar]
  28. Spoering, A. L., Vulic, M. & Lewis, K. ( 2006; ). glpD and plsB participate in persister cell formation in Escherichia coli. J Bacteriol 188, 5136–5144.[CrossRef]
    [Google Scholar]
  29. Stewart, E. J., Madden, R., Paul, G. & Taddei, F. ( 2005; ). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol 3, e45 [CrossRef]
    [Google Scholar]
  30. Sufya, N., Allison, D. G. & Gilbert, P. ( 2003; ). Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J Appl Microbiol 95, 1261–1267.[CrossRef]
    [Google Scholar]
  31. Tijhuis, L., van Benthum, W. A. J., van Loosdrecht, M. C. M. & Heijnen, J. ( 1994; ). Solids retention time in spherical biofilms in a biofilm airlift suspension reactor. Biotechnol Bioeng 44, 867–879.[CrossRef]
    [Google Scholar]
  32. Vázquez-Laslop, N., Lee, H. & Neyfakh, A. A. ( 2006; ). Increased persistence in Escherichia coli caused by controlled expression of toxins and other unrelated proteins. J Bacteriol 188, 3493–3497.
    [Google Scholar]
  33. Webb, G. F. ( 1985; ). Theory of Nonlinear Age-Dependent Population Dynamics. New York: Marcel Dekker.
  34. Webb, G. F. ( 1989; ). Alpha and beta curves, sister–sister and mother–daughter correlations in cell population dynamics. Comput Math Appl 18, 973–984.[CrossRef]
    [Google Scholar]
  35. Wiuff, C., Zappala, R. M., Regoes, R. R., Garner, K. N., Baquero, F. & Levin, B. R. ( 2005; ). Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob Agents Chemother 49, 1483–1494.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006734-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006734-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error