1887

Abstract

The stationary-phase acid-resistance pathways of 2457T have not previously been studied. The two acid-resistance systems, the glutamate-dependent acid-resistance (GDAR) and the oxidative pathways, reported elsewhere for and 3136, were both detected in 2457T. However, 2457T cells grown overnight under fermentative conditions and acid-shocked in minimal media in the absence of glutamate, an acid test often described as a negative control for both pathways, were capable of surviving acid challenge. It is possible that this resistance is due to the oxidative pathway operating in a non-glucose-repressible manner, or to a novel pathway present in 2457T. The construction of and mutants ruled out any contribution by the GDAR pathway, whilst further characterizing the GDAR properties of 2457T. Interestingly, study of the role of in the oxidative pathway and the unusual acid-resistance phenotype revealed that the frameshift present in the 2457T gene results in expression of a truncated RpoS protein, which may be reduced in activity and is not essential for the acid-resistance phenotype of 2457T.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006718-0
2007-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2593.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006718-0&mimeType=html&fmt=ahah

References

  1. Atlung T., Nielsen H. V., Hansen F. G. 2002; Characterisation of the allelic variation in the rpoS gene in thirteen K12 and six other non-pathogenic Escherichia coli strains. Mol Genet Genomics 266:873–881
    [Google Scholar]
  2. Bhagwat A. A., Bhagwat M. 2004; Comparative analysis of transcriptional regulatory elements of glutamate-dependent acid-resistance systems of Shigella flexneri and Escherichia coli O157: H7. FEMS Microbiol Lett 234:139–147
    [Google Scholar]
  3. Castanie-Cornet M. P., Foster J. 2001; Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis -acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147:709–715
    [Google Scholar]
  4. Castanie-Cornet M. P., Penfound T., Smith D., Elliott J., Foster J. 1999; Control of acid resistance in Escherichia coli . J Bacteriol 181:3525–3535
    [Google Scholar]
  5. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  6. de Jonge R., Ritmeester W. S., van Leusden F. M. 2003; Adaptive responses of Salmonella enterica serovar Typhimurium DT104 and other S. Typhimurium strains and Escherichia coli O157 to low pH environments. J Appl Microbiol 94:625–632
    [Google Scholar]
  7. Finkel S. E., Kolter R. 1999; Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A 96:4023–4027
    [Google Scholar]
  8. Giannella R. A., Broitman S. A., Zamcheck N. 1972; Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13:251–256
    [Google Scholar]
  9. Gorden J., Small P. L. C. 1993; Acid resistance in enteric bacteria. Infect Immun 61:364–367
    [Google Scholar]
  10. Hersh B. M., Farooq F., Barstad D., Blankenhorn D., Slonczewski J. L. 1996; A glutamate-dependent acid resistance gene in Escherichia coli . J Bacteriol 178:3978–3981
    [Google Scholar]
  11. Hommais F., Krin E., Coppee J. Y., Lacroix C., Yeramian E., Danchin A., Bertin P. 2004; GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli . Microbiology 150:61–72
    [Google Scholar]
  12. Huan P. T., Taylor R., Lindberg A. A., Verma N. K. 1995; Immunogenicity of the Shigella flexneri serotype Y(SFL124) vaccine strain expressing cloned glucosyl transferase gene of converting bacteriophage SfX. Microbiol Immunol 39:467–472
    [Google Scholar]
  13. King T., Seeto S., Ferenci T. 2006; Genotype-by-environment interactions influencing the emergence of rpoS mutations in Escherichia coli populations. Genetics 172:2071–2079
    [Google Scholar]
  14. Lin J., Soo Lee I., Frey J., Slonczewski J. L., Foster J. 1995; Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri and Escherichia coli . J Bacteriol 177:4097–4104
    [Google Scholar]
  15. Lin J., Smith M., Chapin K., Suk Baik H., Bennett G., Foster J. 1996; Mechanisms of acid resistance in enterohemorrhagic Escherichia coli . Appl Environ Microbiol 62:3094–3100
    [Google Scholar]
  16. Lonetto M., Gribskov M., Gross C. A. 1992; The σ 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849
    [Google Scholar]
  17. Masuda N., Church G. 2003; Regulatory network of acid resistance genes in Escherichia coli . Mol Microbiol 48:699–712
    [Google Scholar]
  18. Miller V. L., Mekalanos J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  19. Notley-McRobb L., King T., Ferenci T. 2002; rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184:806–811
    [Google Scholar]
  20. Oglesby A. G., Murphy E. R., Iyer V. R., Payne S. M. 2005; Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP . Mol Microbiol 58:1354–1367
    [Google Scholar]
  21. Ohnuma M., Fujita N., Ishihama A., Tanaka K., Takahashi H. 2000; A carboxy-terminal 16-amino-acid region of σ 38 of Escherichia coli is important for transcription under high-salt conditions and sigma activities in vivo. J Bacteriol 182:4628–4631
    [Google Scholar]
  22. Price S. B., Cheng C. M., Kaspar C. W., Wright J. C., DeGraves F. J., Penfound T. A., Castanie-Cornet M. P., Foster J. W. 2000; Role of rpoS in acid resistance and fecal shedding of Escherichia coli O157 : H7. Appl Environ Microbiol 66:632–637
    [Google Scholar]
  23. Richard H., Foster J. W. 2004; Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:6032–6041
    [Google Scholar]
  24. Ruiz N., Silhavy T. J. 2003; Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J Bacteriol 185:5984–5992
    [Google Scholar]
  25. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Small P., Blankenhorn D., Welty D., Zinser E., Slonczewski J. L. 1994; Acid and base resistance in Escherichia coli and Shigella flexneri : role of rpoS and growth pH. J Bacteriol 176:1729–1737
    [Google Scholar]
  27. Subbarayan P. R., Sarkar M. 2004; A comparative study of variation in codon 33 of the rpoS gene in Escherichia coli K12 stocks: implications for the synthesis of σ s . Mol Genet Genomics 270:533–538
    [Google Scholar]
  28. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli : partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  29. Waterman S. R., Small P. 1996; Identification of σ s-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri . Mol Microbiol 21:925–940
    [Google Scholar]
  30. Waterman S. R., Small P. L. 2003; Identification of the promoter regions and σ s-dependent regulation of the gadA and gadBC genes associated with glutamate-dependent acid resistance in Shigella flexneri . FEMS Microbiol Lett 225:155–160
    [Google Scholar]
  31. Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R. 2005; Genome-wide analysis of the general stress response network in Escherichia coli : σ s-dependent genes, promoters and sigma factor selectivity. J Bacteriol 187:1591–1603
    [Google Scholar]
  32. Wei J., Goldberg M. B., Burland V., Venkatesan M. M., Deng W., Fournier G., Mayhew G. F., Plunkett G. 3rd, Rose D. J. other authors 2003; Complete genomic sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 71:2775–2786
    [Google Scholar]
  33. Zinser E. R., Kolter R. 1999; Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J Bacteriol 181:5800–5807
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006718-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006718-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error