1887

Abstract

Peptaibols are characteristic linear -aminoisobutyrate-containing peptides produced by certain Ascomycetes, especially of the genus / [ and are the names for the teleo- and anamorph forms of the same taxon; where known to occur in nature, the teleomorph is used to name the species. To aid the inexperienced reader, both names (the less well known one in parentheses) are given at the first mention of each species.] Here we have investigated whether phylogenetic relationships within permit a prediction of the peptaibol production profiles. To this end, representative strains from a third (28) of the known species of , identified by the sequences of diagnostic genes and covering most clades of the established multilocus phylogeny of /, were investigated by intact-cell MALDI-TOF mass spectrometry. Peptaibols were detected in all strains, and some strains were found to produce up to five peptide families of different sizes. Comparison of the data with phylogenies derived from rRNA spacer regions (ITS1 and 2) and RNA polymerase subunit B () gene sequences did not show a strict correlation with the types and sequences of the peptaibols produced, but the production of some groups of peptaibols appears to be found only in some clades or sections of the genus, which could be used for more targeted screening of novel compounds of this type. In an analysis of peptaibol structures, we have defined conserved key positions and have further identified and compared sequences of the corresponding adenylate domains within non-ribosomal peptide synthetases producing trichovirins, paracelsins and atroviridins. These phylogenies are not concordant with those of their producers , and as obtained from ITS1 and 2, and , respectively, and therefore hint at a complex history of peptaibol diversity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006692-0
2007-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3417.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006692-0&mimeType=html&fmt=ahah

References

  1. Augeven-Bour, I., Rebuffat, S., Auvin, C., Goulard, C., Prigent, Y. & Bodo, B. ( 1997; ). Harzianin HB I, an 11-residue peptaibol from Trichoderma harzianum: isolation, sequence, solution synthesis and membrane activity. J Chem Soc Perkin Trans I 10. 1587–1594.
    [Google Scholar]
  2. Auvin-Guette, C., Rebuffat, S., Prigent, Y. & Bodo, B. ( 1992; ). Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114, 2170–2174.[CrossRef]
    [Google Scholar]
  3. Auvin-Guette, C., Rebuffat, S., Vuidepot, I., Massias, M. & Bodo, B. ( 1993; ). Structural elucidation of trikoningins KA and KB, peptaibols from Trichoderma koningii. J Chem Soc Perkin Trans I 2. 249–255.
    [Google Scholar]
  4. Becker, D., Kiess, M. & Brückner, H. ( 1997; ). Structures of peptaibol antibiotics hypomurocin A and B from the ascomycetous fungus Hypocrea muroiana Hino et Katsumoto. Liebigs Annalen-Recueil 767–772.
    [Google Scholar]
  5. Benedetti, E., Bavoso, A., Di Blasio, B., Pavone, V., Pedone, C., Toniolo, C. & Bonora, G. M. ( 1982; ). Peptaibol antibiotics: a study on the helical structure of the two sequences of emerimicins III and IV. Proc Natl Acad Sci U S A 79, 7951–7954.[CrossRef]
    [Google Scholar]
  6. Bissett, J. ( 1984; ). A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can J Bot 62, 924–931.[CrossRef]
    [Google Scholar]
  7. Bissett, J. ( 1991a; ). A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69, 2357–2372.[CrossRef]
    [Google Scholar]
  8. Bissett, J. ( 1991b; ). A revision of the genus Trichoderma. III. Section Pachybasium. Can J Bot 69, 2373–2417.[CrossRef]
    [Google Scholar]
  9. Bissett, J. ( 1991c; ). A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can J Bot 69, 2418–2420.[CrossRef]
    [Google Scholar]
  10. Bissett, J. ( 1992; ). Trichoderma atroviride. Can J Bot 70, 639–641.[CrossRef]
    [Google Scholar]
  11. Bodo, B., Rebuffat, S., El Hajji, M. & Davoust, D. ( 1985; ). Structure of trichorzianine A IIIc, an antifungal peptide from Trichoderma harzianum. J Am Chem Soc 107, 6017–6019.[CrossRef]
    [Google Scholar]
  12. Brückner, H. & Graf, A. ( 1983; ). Paracelsin, a peptide antibiotic containing alpha-aminoisobutyric acid, isolated from Trichoderma reesei Simmons. Part A. Experientia 39, 528–530.[CrossRef]
    [Google Scholar]
  13. Brückner, H. & Koza, A. ( 2003; ). Solution phase synthesis of the 14-residue peptaibol antibiotic trichovirin I. Amino Acids 24, 311–323.[CrossRef]
    [Google Scholar]
  14. Brückner, H., Graf, H. & Bokel, M. ( 1984; ). Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei Simmons. Part B. Experientia 40, 1189–1197.[CrossRef]
    [Google Scholar]
  15. Brückner, H., König, W. A., Aydin, M. & Jung, G. ( 1985; ). Trichotoxin A40. Purification by counter-current distribution and sequencing of isolated fragments. Biochim Biophys Acta 827, 51–62.[CrossRef]
    [Google Scholar]
  16. Challis, G. L., Ravel, J. & Townsend, C. A. ( 2000; ). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7, 211–224.[CrossRef]
    [Google Scholar]
  17. Chaverri, P., Castlebury, L. A., Samuels, G. J. & Geiser, D. M. ( 2003; ). Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 27, 302–313.[CrossRef]
    [Google Scholar]
  18. Chugh, J. K. & Wallace, B. A. ( 2001; ). Peptaibols: models for ion channels. Biochem Soc Trans 29, 565–570.[CrossRef]
    [Google Scholar]
  19. Chugh, J. K., Brückner, H. & Wallace, B. A. ( 2002; ). Model for a helical bundle channel based on the high-resolution crystal structure of trichotoxin A50E. Biochemistry 41, 12934–12941.[CrossRef]
    [Google Scholar]
  20. Degenkolb, T., Berg, A., Gams, W., Schlegel, B. & Gräfe, U. ( 2003; ). The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J Pept Sci 9, 666–678.[CrossRef]
    [Google Scholar]
  21. Degenkolb, T., Gräfenhan, T., Berg, A., Nirenberg, H. I., Gams, W. & Brückner, H. ( 2006a; ). Peptaibiomics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chem Biodivers 3, 593–610.[CrossRef]
    [Google Scholar]
  22. Degenkolb, T., Gräfenhan, A., Nirenberg, H. I., Gams, W. & Brückner, H. ( 2006b; ). Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem 54, 7047–7061.[CrossRef]
    [Google Scholar]
  23. Dodd, L. S., Lieckfeldt, E., Chaverri, P., Overton, B. E. & Samuels, G. J. ( 2002; ). Taxonomy and phylogenetic relationships of two species of Hypocrea with Trichoderma anamorphs. Mycol Prog 1, 409–428.[CrossRef]
    [Google Scholar]
  24. Druzhinina, I. & Kubicek, C. P. ( 2005; ). Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B 6, 100–112.[CrossRef]
    [Google Scholar]
  25. Druzhinina, I. S., Kopchinskiy, A. G., Komon, M., Bissett, J., Szakacs, G. & Kubicek, C. P. ( 2005; ). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42, 813–828.[CrossRef]
    [Google Scholar]
  26. Druzhinina, I. S., Koptchinskiy, A. & Kubicek, C. P. ( 2006; ). The first one hundred Trichoderma species characterized by molecular data. Mycoscience 47, 55–64.[CrossRef]
    [Google Scholar]
  27. Duval, D., Rebuffat, S., Goulard, C., Prigent, Y., Becchi, M. & Bodo, B. ( 1997; ). Isolation and sequence analysis of peptide antibiotics trichorzins PA from Trichoderma harzianum. J Chem Soc Perkin Trans I 14. 2147–2154.
    [Google Scholar]
  28. Erhard, M., von Döhren, H. & Jungblut, P. ( 1997; ). Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nat Biotechnol 15, 906–909.[CrossRef]
    [Google Scholar]
  29. Fastner, J., Erhard, M. & von Döhren, H. ( 2001; ). Oligopeptide diversity in natural populations of Microcystis (Cyanobacteria) by typing single colonies using MALDI-TOF mass spectrometry. Appl Environ Microbiol 67, 5069–5076.[CrossRef]
    [Google Scholar]
  30. Fleetwood, D. J., Scott, B., Lane, D. A., Tanaka, A. & Johnson, D. A. ( 2007; ). A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl Environ Microbiol 73, 2571–2579.[CrossRef]
    [Google Scholar]
  31. Fujita, T., Takaishi, Y. & Okamura, A. ( 1981; ). New peptide antibiotics, trichopolyns I and II, from Trichoderma polysporum. J Chem Soc Chem Commun 12, 585–587.
    [Google Scholar]
  32. Fujita, T., Wada, S., Iida, A., Nishimura, T., Kanai, M. & Toyama, N. ( 1994; ). Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins-I and -II, from Trichoderma viride. Chem Pharm Bull (Tokyo) 42, 489–494.[CrossRef]
    [Google Scholar]
  33. Goulard, C., Hlimi, S. & Rebuffat, S. ( 1995; ). Trichorzins HA and MA, antibiotic peptides from Trichoderma harzianum. I. Fermentation, isolation and biological properties. J Antibiot (Tokyo) 48, 1248–1253.[CrossRef]
    [Google Scholar]
  34. Hermosa, M. R., Keck, E. J., Chamorro, I., Rubio, M. B., Sanz, L., Vizcaíno, J. A., Grondona, I. & Monte, E. ( 2004; ). Genetic diversity shown in Trichoderma biocontrol isolates. Mycol Res 108, 897–906.[CrossRef]
    [Google Scholar]
  35. Hlimi, S., Rebuffat, S., Goulard, C., Duchamp, S. & Bodo, B. ( 1995; ). Trichorzins HA and MA, antibiotic peptides from Trichoderma harzianum. II. Sequence determination. J Antibiot 48, 1254–1261.[CrossRef]
    [Google Scholar]
  36. Huang, Q., Tezuka, Y., Hatanaka, Y., Kikuchi, T., Nishi, A. & Tubaki, K. ( 1995a; ). Studies on metabolites of mycoparasitic fungi. IV. Minor peptaibols of Trichoderma koningii. Chem Pharm Bull (Tokyo) 43, 1663–1668.[CrossRef]
    [Google Scholar]
  37. Huang, Q., Tezuka, Y., Kikuchi, T., Nishi, A., Tubaki, K. & Tanaka, K. ( 1995b; ). Studies on metabolites of mycoparasitic fungi. II. Metabolites of Trichoderma koningii. Chem Pharm Bull (Tokyo) 43, 223–229.[CrossRef]
    [Google Scholar]
  38. Huang, Q., Tezuka, Y., Hatanaka, Y., Kikuchi, T., Nishi, A. & Tubaki, K. ( 1996; ). Studies on the metabolites of mycoparasitic fungi. V. Ion-spray ionization mass spectrometric analysis of Trichokonin-II, a peptaibol mixture obtained from the culture broth of Trichoderma koningii. Chem Pharm Bull (Tokyo) 44, 590–593.[CrossRef]
    [Google Scholar]
  39. Iida, A., Okuda, M., Uesato, S., Takaishi, Y., Shingu, T., Morita, M. & Fujita, T. ( 1990; ). Fungal metabolites. Part 3. Structural elucidation and antibiotic peptides, trichosporin-B-IIIb, -IIIc, -IVb, -IVc, -IVd, -VIa and -VIb from Trichoderma polysporum. Application of fast atomic bombardment mass spectrometry to peptides containing a unique Aib-Pro peptide bond. J Chem Soc Perkin Trans I 12. 3249–3255.
    [Google Scholar]
  40. Iida, J., Iida, A., Takahashi, Y., Takaishi, Y., Nagaoka, Y. & Fujita, T. ( 1993; ). Fungal metabolites. Part 5. Rapid structure elucidation of antibiotic peptides, minor components of trichosporin Bs from Trichoderma polysporum. Application of linked scan and continuous-flow fast atom bombardment mass spectrometry. J Chem Soc Perkin Trans I 3. 357–365.
    [Google Scholar]
  41. Iida, A., Sanekata, M., Fujita, T., Tanaka, H., Enoki, A., Fuse, G., Kanai, M., Rudewicz, P. J. & Tachikawa, E. ( 1994; ). Fungal metabolites. XVI. Structures of new peptaibols, trichokindins I–VII, from the fungus Trichoderma harzianum. Chem Pharm Bull (Tokyo) 42, 1070–1075.[CrossRef]
    [Google Scholar]
  42. Iida, A., Mihara, T., Fujita, T. & Takaishi, Y. ( 1999; ). Peptidic immunosuppressants from the fungus Trichoderma polysporum. Bioorg Med Chem Lett 9, 3393–3396.[CrossRef]
    [Google Scholar]
  43. Jaworski, A., Kirschbaum, J. & Brückner, H. ( 1999; ). Structures of trichovirins II, peptaibol antibiotics from the mold Trichoderma viride NRRL 5243. J Pept Sci 5, 341–351.[CrossRef]
    [Google Scholar]
  44. Koumoutsi, A., Chen, X.-H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, G., Vater, J. & Boriss, P. ( 2004; ). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186, 1084–1096.[CrossRef]
    [Google Scholar]
  45. Kraus, G. F., Druzhinina, I., Gams, W., Bissett, J., Zafari, D., Szakacs, G., Koptchinski, A., Prillinger, H., Zare, R. & Kubicek, C. P. ( 2004; ). Trichoderma brevicompactum sp. nov. Mycologia 96, 1059–1073.[CrossRef]
    [Google Scholar]
  46. Krause, C. ( 2006; ). Isolierung, Sequenzierung und Wirkungsprüfung von bioaktiven Peptid-Antibiotika aus Schimmelpilzen. PhD thesis, Justus-Liebig-Universität Gießen, Germany.
  47. Krause, C., Kirschbaum, J. & Brückner, H. ( 2006; ). Peptaibiomics: an advanced, rapid and selective analysis of peptaibiotics/peptaibols by SPE/LC-ES-MS. Amino Acids 30, 435–443.[CrossRef]
    [Google Scholar]
  48. Kuhls, K., Lieckfeldt, E., Samuels, G. J., Kovacs, W., Meyer, W., Petrini, O., Gams, W., Börner, T. & Kubicek, C. P. ( 1996; ). Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci U S A 93, 7755–7760.[CrossRef]
    [Google Scholar]
  49. Kullnig, C., Krupica, T., Woo, S. L., Mach, R. L., Rey, M., Benitez, T., Lorito, M. & Kubicek, C. P. ( 2001; ). Confusion abounds over identities of Trichoderma biocontrol isolates. Mycol Res 105, 769–772.[CrossRef]
    [Google Scholar]
  50. Kullnig-Gradinger, C. M., Szakacs, G. & Kubicek, C. P. ( 2002; ). Phylogeny and evolution of the fungal genus Trichoderma: a multigene approach. Mycol Res 106, 757–767.[CrossRef]
    [Google Scholar]
  51. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  52. Landreau, A. ( 2001; ). Métabolites d'une souche de Trichoderma koningii Oudemans isolée du milieu maris: étude chimique, biologique et risques pour les coquillages en culture. PhD thesis, University Nantes, France.
  53. Landreau, A., Pouchus, Y. F., Sallenave-Namont, C., Biard, J. F., Boumard, M. C., Robiou du Pont, T., Mondeguer, F., Goulard, C. & Verbist, J. F. ( 2002; ). Combined use of LC/MS and a biological test for rapid identification of marine mycotoxins produced by Trichoderma koningii. J Microbiol Methods 48, 181–194.[CrossRef]
    [Google Scholar]
  54. Leclerc, G., Rebuffat, S., Goulard, C. & Bodo, B. ( 1998a; ). Directed biosynthesis of peptaibol antibiotics in two Trichoderma strains. I. Fermentation and isolation. J Antibiot (Tokyo) 51, 170–177.[CrossRef]
    [Google Scholar]
  55. Leclerc, G., Rebuffat, S. & Bodo, B. ( 1998b; ). Directed biosynthesis of peptaibol antibiotics in two Trichoderma strains. II. Structure elucidation. J Antibiot (Tokyo) 51, 178–183.[CrossRef]
    [Google Scholar]
  56. Leclerc, G., Goulard, C., Prigent, Y., Bodo, B., Wroblewski, H. & Rebuffat, S. ( 2001; ). Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma longibrachiatum. J Nat Prod 64, 164–170.[CrossRef]
    [Google Scholar]
  57. Lieckfeldt, E., Samuels, G. J., Nirenberg, H. I. & Petrini, O. ( 1999; ). A morphological and molecular perspective of Trichoderma viride: is it one or two species? Appl Environ Microbiol 65, 2418–2428.
    [Google Scholar]
  58. Lu, B. S., Druzhinina, I., Fallah, P., Chaverri, P., Gradinger, C. M., Kubicek, C. P. & Samuels, G. J. ( 2004; ). Hypocrea/Trichoderma species with pachybasium-like conidiophores: teleomorphs for T. minutisporum and T. polysporum and their newly discovered relatives. Mycologia 96, 310–342.[CrossRef]
    [Google Scholar]
  59. Nei, M. & Kumar, S. ( 2000; ). Molecular Evolution and Phylogenetics. New York: Oxford University Press.
  60. Neuhof, T., Dieckmann, R., Drushinina, I. S., Kubicek, C. P., Nakari-Setälä, T., Penttilä, M. & von Döhren, H. ( 2007a; ). Direct identification of hydrophobins and their processing in Trichoderma using Intact-Cell MALDI-TOF mass spectrometry. FEBS J 274, 841–852.[CrossRef]
    [Google Scholar]
  61. Neuhof, T., Berg, A., Besl, H., Schwecke, T., Dieckmann, R. & von Döhren, H. ( 2007b; ). Peptaibol production by Sepedonium strains parasitizing Boletales. Chem Biodivers 4, 1103–1115.[CrossRef]
    [Google Scholar]
  62. New, A. P., Eckers, C., Haskins, N. J., Neville, W. A., Elson, S., Hueso-Rodríguez, J. A. & Rivera-Sagredo, A. ( 1996; ). Structures of polysporins A-D, four new peptaibols isolated from Trichoderma polysporum. Tetrahedron Lett 37, 3039–3042.[CrossRef]
    [Google Scholar]
  63. Nicholas, H. B., Jr & McClain, W. H. ( 1987; ). An algorithm for discriminating sequences and its application to yeast transfer RNA. Comput Appl Biosci 3, 177–181.
    [Google Scholar]
  64. Oh, S. U., Lee, S. J., Kim, J. H. & Yoo, I. D. ( 2000; ). Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41, 61–64.[CrossRef]
    [Google Scholar]
  65. Pabel, C. T., Vater, J., Wilde, C., Franke, P., Hofemeister, J., Adler, B., Bringmann, G., Hacker, J. & Hentschel, U. ( 2003; ). Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol (NY) 5, 424–434.[CrossRef]
    [Google Scholar]
  66. Pocsfalvi, G., Ritieni, A., Ferranti, P., Randazzo, G., Vekey, K. & Malorni, A. ( 1997; ). Microheterogeneity characterization of a paracelsin mixture from Trichoderma reesei using high-energy collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom 11, 922–930.[CrossRef]
    [Google Scholar]
  67. Pocsfalvi, G., Scala, F., Lorito, M., Ritieni, A., Randazzo, G., Ferranti, P., Vekey, K. & Malorni, A. ( 1998; ). Microheterogeneity characterization of a trichorzianine-A mixture from Trichoderma harzianum. J Mass Spectrom 33, 154–163.[CrossRef]
    [Google Scholar]
  68. Przybylski, M., Dietrich, I., Manz, I. & Brückner, H. ( 1984; ). Elucidation of structure microheterogeneity of the polypeptide antibiotics paracelsin and trichotoxin A-50 by fast atom bombardment mass spectrometry in combination with selective in situ hydrolysis. Biomed Mass Spectrom 11, 569–582.[CrossRef]
    [Google Scholar]
  69. Rantala, A., Fewer, D., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Börner, T. & Sivonen, K. ( 2004; ). Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101, 568–573.[CrossRef]
    [Google Scholar]
  70. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D. H. ( 2005; ). Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33, 5799–5808.[CrossRef]
    [Google Scholar]
  71. Rebuffat, S., El Hajji, M., Hennig, P., Davoust, D. & Bodo, B. ( 1989; ). Isolation, sequence, and conformation of seven trichorzianines B from Trichoderma harzianum. Int J Pept Protein Res 34, 200–210.
    [Google Scholar]
  72. Rebuffat, S., Prigent, Y., Auvin-Guette, C. & Bodo, B. ( 1991; ). Tricholongins BI and BII 19-residue peptaibols from Trichoderma longibrachiatum. Eur J Biochem 201, 661–674.[CrossRef]
    [Google Scholar]
  73. Rebuffat, S., Goulard, C. & Bodo, B. ( 1995; ). Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J Chem Soc Perkin Trans I 14, 1849–1855.
    [Google Scholar]
  74. Rebuffat, S., Hlimi, S., Prigent, Y., Goulard, C. & Bodo, B. ( 1996; ). Isolation and structural elucidation of the 11-residue peptaibol antibiotic, harzianin HK VI. J Chem Soc Perkin Trans I 16, 2021–2027.
    [Google Scholar]
  75. Rifai, M. A. ( 1969; ). A revision of the genus Trichoderma. Mycol Pap 116, 1–56.
    [Google Scholar]
  76. Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. ( 2003; ). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497.[CrossRef]
    [Google Scholar]
  77. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  78. Sharman, G. J., Try, A. C., Williams, D. H., Ainsworth, A. M., Beneyto, R., Gibson, T. M., McNicholas, C., Renno, D. V., Robinson, N. & other authors ( 1996; ). Structural elucidation of XR586, a peptaibol-like antibiotic from Acremonium persicinum. Biochem J 320, 723–728.
    [Google Scholar]
  79. Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. ( 1999; ). The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6, 493–505.[CrossRef]
    [Google Scholar]
  80. Suwan, S., Isobe, M., Kanokmedhakul, S., Lourit, N., Kanokmedhakul, K., Soytong, K. & Koga, K. ( 2000; ). Elucidation of high micro-heterogeneity of an acidic-neutral trichotoxin mixture by electrospray ionisation quadrupole time-of-flight mass spectrometry. J Mass Spectrom 35, 1438–1451.[CrossRef]
    [Google Scholar]
  81. Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L. & Vágvölgyi, C. ( 2005; ). Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiol Immunol Hung 52, 137–168.[CrossRef]
    [Google Scholar]
  82. Tajima, F. & Nei, M. ( 1984; ). Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1, 269–285.
    [Google Scholar]
  83. Vizcaino, J. A., Sanz, L., Cardoza, R. E., Monte, E. & Gutièrrez, S. ( 2005; ). Detection of putative peptide synthetase genes in Trichoderma species: application of this method to cloning of a gene from T. harzianum CECT 2413. FEMS Microbiol Lett 244, 139–148.[CrossRef]
    [Google Scholar]
  84. Vizcaino, J. A., Cardoza, R. E., Dubost, L., Bodo, B., Gutièrrez, S. & Monte, E. ( 2006; ). Detection of peptaibols and cloning of a putative peptaibol synthetase gene from Trichoderma harzianum CECT 2413. Folia Microbiol (Praha) 51, 114–120.[CrossRef]
    [Google Scholar]
  85. Welker, M. & von Döhren, H. ( 2006; ). Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Lett 30, 530–563.[CrossRef]
    [Google Scholar]
  86. Welker, M., Fastner, J., Erhard, M. & von Döhren, H. ( 2002; ). Applications of MALDI-TOF MS analyses in cyanotoxin research. Environ Toxicol 17, 367–374.[CrossRef]
    [Google Scholar]
  87. Welker, M., Brunke, M., Preussel, K., Lippert, I. & von Döhren, H. ( 2004a; ). Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 150, 1785–1796.[CrossRef]
    [Google Scholar]
  88. Welker, M., Christiansen, G. & Döhren, H. ( 2004b; ). Diversity of coexisting Planktothrix chemotypes – production of microcystins and other oligopeptides. Arch Microbiol 182, 288–298.[CrossRef]
    [Google Scholar]
  89. Welker, M., Maršálek, B., Šejnohová, L. & von Döhren, H. ( 2006; ). Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: toward an understanding of metabolic diversity. Peptides 27, 2090–2103.[CrossRef]
    [Google Scholar]
  90. Whitmore, L. & Wallace, B. A. ( 2004; ). The peptaibol database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 32, D593–D594.[CrossRef]
    [Google Scholar]
  91. Wiest, A., Grzegorski, D., Xu, B. W., Goulard, C., Rebuffat, S., Ebbole, D. J., Bodo, B. & Kenerley, C. ( 2002; ). Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277, 20862–20868.[CrossRef]
    [Google Scholar]
  92. Williams, B. H., Hathout, Y. & Fenselau, C. ( 2002; ). Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. J Mass Spectrom 37, 259–264.[CrossRef]
    [Google Scholar]
  93. Yun, B.-S., Yoo, I.-D., Kim, Y. H., Kim, Y.-S., Lee, S. J., Kim, K. S. & Yeo, W. H. ( 2000; ). Peptaivirins A and B, two new antiviral peptaibols against TMV infection. Tetrahedron Lett 41, 1429–1431.[CrossRef]
    [Google Scholar]
  94. Zhang, J., Rosenberg, H. F. & Nei, M. ( 1998; ). Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95, 3708–3713.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006692-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006692-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error