1887

Abstract

colonizes the moist squamous epithelium of the anterior nares. One of the adhesins likely to be responsible is the urface protein (SasG), which has sequence similarity with the proteins Pls (asmin ensitive) of and Aap (ccumulation ssociated rotein) of Expression of SasG by a laboratory strain of could not be detected by Western immunoblotting. To enable investigation of SasG, the gene was cloned into two expression vectors, the IPTG-inducible pMUTIN4 and the tetracycline-inducible pALC2073, and introduced into Expression of SasG masked the ability of exponentially grown cells expressing protein A (Spa), clumping factor B (ClfB) and the fibronectin binding proteins A and B (FnBPA and FnBPB) to bind to IgG, cytokeratin 10 and fibronectin, respectively. SasG also masked binding to fibrinogen mediated by both ClfB and the FnBPs. Western immunoblotting showed no reduction in expression of the blocked adhesins following induction of SasG. SasG size variants with eight, six or five B repeats masked binding to the ligands, whereas variants with four, two or one repeats had no effect. SasG-expressing strains formed peritrichous fibrils (53.47±2.51 nm long) of varying density on the cell wall, which were labelled by immunogold negative staining with anti-SasG antibodies. SasG-expressing strains of also formed biofilm independently of the polysaccharide intercellular adhesin (PIA). SasG variants with eight, six and five repeats formed biofilm, whereas variants with four, two or one repeats did not. It was concluded that the fibrillar nature of SasG explains its ability to mask binding of microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to their ligands and to promote formation of biofilm. In addition, the strong adhesion of SasG to desquamated nasal epithelial cells likely compensates for its blocking of the binding of ClfB to cytokeratin 10, which is important in adhesion to squames by cells lacking SasG. Several clinical isolates expressed SasG at levels similar to those of SH1000  : : pMUTIN4, indicating that the properties described in the laboratory strain SH1000 may be relevant .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006676-0
2007-08-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2435.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006676-0&mimeType=html&fmt=ahah

References

  1. Banner, M. A., Cunniffe, J. G., Macintosh, R. L., Foster, T. J., Rohde, H., Mack, D., Hoyes, E., Derrick, J., Upton, M. & Handley, P. S. ( 2007; ). Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation associated protein. J Bacteriol 189, 2793–2804.[CrossRef]
    [Google Scholar]
  2. Bateman, B. T., Donegan, N. P., Jarry, T. M., Palma, M. & Cheung, A. L. ( 2001; ). Evaluation of a tetracycline-inducible promoter in Staphylococcus aureus in vitro and in vivo and its application in demonstrating the role of sigB in microcolony formation. Infect Immun 69, 7851–7857.[CrossRef]
    [Google Scholar]
  3. Chuard, C., Lucet, J. C., Rohner, P., Herrmann, M., Auckenthaler, R., Waldvogel, F. A. & Lew, D. P. ( 1991; ). Resistance of Staphylococcus aureus recovered from infected foreign body in vivo to killing by antimicrobials. J Infect Dis 163, 1369–1373.
    [Google Scholar]
  4. Clarke, S. R., Brummell, K. J., Horsburgh, M. J., McDowell, P. W., Mohamad, S. A., Stapleton, M. R., Acevedo, J., Read, R. C., Day, N. P. & other authors ( 2006; ). Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. J Infect Dis 193, 1098–1108.[CrossRef]
    [Google Scholar]
  5. Day, N. P., Moore, C. E., Enright, M. C., Berendt, A. R., Smith, J. M., Murphy, M. F., Peacock, S. J., Spratt, B. G. & Feil, E. J. ( 2001; ). A link between virulence and ecological abundance in natural populations of Staphylococcus aureus. Science 292, 114–116.[CrossRef]
    [Google Scholar]
  6. Elliott, D., Harrison, E., Handley, P. S., Ford, S. K., Jaffray, E., Mordan, N. & McNab, R. ( 2003; ). Prevalence of Csh-like fibrillar surface proteins among mitis group oral streptococci. Oral Microbiol Immunol 18, 114–120.[CrossRef]
    [Google Scholar]
  7. Fitzgerald, J. R., Loughman, A., Keane, F., Brennan, M., Knobel, M., Higgins, J., Visai, L., Speziale, P., Cox, D. & Foster, T. J. ( 2006; ). Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcgammaRIIa receptor. Mol Microbiol 59, 212–230.[CrossRef]
    [Google Scholar]
  8. Fitzpatrick, F., Humphreys, H. & O'Gara, J. P. ( 2005; ). Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol 43, 1973–1976.[CrossRef]
    [Google Scholar]
  9. Foster, T. J. ( 1998; ). Molecular genetic analysis of staphylococcal virulence. In Methods in Microbiology, vol. 27, pp. 433–454. Edited by P. H. Williams, J. Ketley & G. Salmond. Oxford, UK: Elsevier.
  10. Foster, T. J. & Hook, M. ( 1998; ). Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6, 484–488.[CrossRef]
    [Google Scholar]
  11. Handley, P. S., Carter, P. L., Wyatt, J. E. & Hesketh, L. M. ( 1985; ). Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infect Immun 47, 217–227.
    [Google Scholar]
  12. Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D. & Gotz, F. ( 1996; ). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20, 1083–1091.[CrossRef]
    [Google Scholar]
  13. Heilmann, C., Hussain, M., Peters, G. & Gotz, F. ( 1997; ). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24, 1013–1024.[CrossRef]
    [Google Scholar]
  14. Horsburgh, M. J., Aish, J. L., White, I. J., Shaw, L., Lithgow, J. K. & Foster, S. J. ( 2002; ). σ B modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184, 5457–5467.[CrossRef]
    [Google Scholar]
  15. Kluytmans, J., van Belkum, A. & Verbrugh, H. ( 1997; ). Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10, 505–520.
    [Google Scholar]
  16. Kreiswirth, B. N., Lofdahl, S., Betley, M. J., O'Reilly, M., Schlievert, P. M., Bergdoll, M. S. & Novick, R. P. ( 1983; ). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712.[CrossRef]
    [Google Scholar]
  17. Lindsay, J. A., Moore, C. E., Day, N. P., Peacock, S. J., Witney, A. A., Stabler, R. A., Husain, S. E., Butcher, P. D. & Hinds, J. ( 2006; ). Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188, 669–676.[CrossRef]
    [Google Scholar]
  18. Mack, D. ( 1999; ). Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J Hosp Infect 43 (Suppl), S113–S125.[CrossRef]
    [Google Scholar]
  19. Mack, D., Becker, P., Chatterjee, I., Dobinsky, S., Knobloch, J. K., Peters, G., Rohde, H. & Herrmann, M. ( 2004; ). Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 294, 203–212.[CrossRef]
    [Google Scholar]
  20. Mazmanian, S. K., Ton-That, H. & Schneewind, O. ( 2001; ). Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40, 1049–1057.[CrossRef]
    [Google Scholar]
  21. McAleese, F. M., Walsh, E. J., Sieprawska, M., Potempa, J. & Foster, T. J. ( 2001; ). Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276, 29969–29978.[CrossRef]
    [Google Scholar]
  22. McNab, R., Forbes, H., Handley, P. S., Loach, D. M., Tannock, G. W. & Jenkinson, H. F. ( 1999; ). Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J Bacteriol 181, 3087–3095.
    [Google Scholar]
  23. Navarre, W. W. & Schneewind, O. ( 1999; ). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63, 174–229.
    [Google Scholar]
  24. Ni Eidhin, D., Perkins, S., Francois, P., Vaudaux, P., Hook, M. & Foster, T. J. ( 1998; ). Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30, 245–257.[CrossRef]
    [Google Scholar]
  25. Novick, R. ( 1967; ). Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33, 155–166.[CrossRef]
    [Google Scholar]
  26. O'Brien, L. M., Walsh, E. J., Massey, R. C., Peacock, S. J. & Foster, T. J. ( 2002; ). Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 4, 759–770.[CrossRef]
    [Google Scholar]
  27. Peacock, S. J., de Silva, I. & Lowy, F. D. ( 2001; ). What determines nasal carriage of Staphylococcus aureus?. Trends Microbiol 9, 605–610.[CrossRef]
    [Google Scholar]
  28. Roche, F. M., Massey, R., Peacock, S. J., Day, N. P., Visai, L., Speziale, P., Lam, A., Pallen, M. & Foster, T. J. ( 2003a; ). Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149, 643–654.[CrossRef]
    [Google Scholar]
  29. Roche, F. M., Meehan, M. & Foster, T. J. ( 2003b; ). The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149, 2759–2767.[CrossRef]
    [Google Scholar]
  30. Rohde, H., Burdelski, C., Bartscht, K., Hussain, M., Buck, F., Horstkotte, M. A., Knobloch, J. K., Heilmann, C., Herrmann, M. & Mack, D. ( 2005; ). Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55, 1883–1895.[CrossRef]
    [Google Scholar]
  31. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Saravia-Otten, P., Muller, H. P. & Arvidson, S. ( 1997; ). Transcription of Staphylococcus aureus fibronectin binding protein genes is negatively regulated by agr and an agr-independent mechanism. J Bacteriol 179, 5259–5263.
    [Google Scholar]
  33. Savolainen, K., Paulin, L., Westerlund-Wikstrom, B., Foster, T. J., Korhonen, T. K. & Kuusela, P. ( 2001; ). Expression of pls, a gene closely associated with the mecA gene of methicillin-resistant Staphylococcus aureus, prevents bacterial adhesion in vitro. Infect Immun 69, 3013–3020.[CrossRef]
    [Google Scholar]
  34. Schaffer, A. C., Solinga, R. M., Cocchiaro, J., Portoles, M., Kiser, K. B., Risley, A., Randall, S. M., Valtulina, V. & Speziale, P. ( 2006; ). Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect Immun 74, 2145–2153.[CrossRef]
    [Google Scholar]
  35. Telford, J. L., Barocchi, M. A., Margarit, I., Rappuoli, R. & Grandi, G. ( 2006; ). Pili in Gram-positive pathogens. Nat Rev Microbiol 4, 509–519.[CrossRef]
    [Google Scholar]
  36. Toledo-Arana, A., Merino, N., Vergara-Irigaray, M., Debarbouille, M., Penades, J. R. & Lasa, I. ( 2005; ). Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J Bacteriol 187, 5318–5329.[CrossRef]
    [Google Scholar]
  37. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104.[CrossRef]
    [Google Scholar]
  38. Weerkamp, A. H., Handley, P. S., Baars, A. & Slot, J. W. ( 1986; ). Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril. J Bacteriol 165, 746–755.
    [Google Scholar]
  39. Zhang, L., Fan, F., Palmer, L. M., Lonetto, M. A., Petit, C., Voelker, L. L., St John, A., Bankosky, B., Rosenberg, M. & McDevitt, D. ( 2000; ). Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene 255, 297–305.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006676-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006676-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error