1887

Abstract

colonizes the moist squamous epithelium of the anterior nares. One of the adhesins likely to be responsible is the urface protein (SasG), which has sequence similarity with the proteins Pls (asmin ensitive) of and Aap (ccumulation ssociated rotein) of Expression of SasG by a laboratory strain of could not be detected by Western immunoblotting. To enable investigation of SasG, the gene was cloned into two expression vectors, the IPTG-inducible pMUTIN4 and the tetracycline-inducible pALC2073, and introduced into Expression of SasG masked the ability of exponentially grown cells expressing protein A (Spa), clumping factor B (ClfB) and the fibronectin binding proteins A and B (FnBPA and FnBPB) to bind to IgG, cytokeratin 10 and fibronectin, respectively. SasG also masked binding to fibrinogen mediated by both ClfB and the FnBPs. Western immunoblotting showed no reduction in expression of the blocked adhesins following induction of SasG. SasG size variants with eight, six or five B repeats masked binding to the ligands, whereas variants with four, two or one repeats had no effect. SasG-expressing strains formed peritrichous fibrils (53.47±2.51 nm long) of varying density on the cell wall, which were labelled by immunogold negative staining with anti-SasG antibodies. SasG-expressing strains of also formed biofilm independently of the polysaccharide intercellular adhesin (PIA). SasG variants with eight, six and five repeats formed biofilm, whereas variants with four, two or one repeats did not. It was concluded that the fibrillar nature of SasG explains its ability to mask binding of microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to their ligands and to promote formation of biofilm. In addition, the strong adhesion of SasG to desquamated nasal epithelial cells likely compensates for its blocking of the binding of ClfB to cytokeratin 10, which is important in adhesion to squames by cells lacking SasG. Several clinical isolates expressed SasG at levels similar to those of SH1000  : : pMUTIN4, indicating that the properties described in the laboratory strain SH1000 may be relevant .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006676-0
2007-08-01
2020-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2435.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006676-0&mimeType=html&fmt=ahah

References

  1. Banner M. A., Cunniffe J. G., Macintosh R. L., Foster T. J., Rohde H., Mack D., Hoyes E., Derrick J., Upton M., Handley P. S.. 2007; Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation associated protein. J Bacteriol189:2793–2804
    [Google Scholar]
  2. Bateman B. T., Donegan N. P., Jarry T. M., Palma M., Cheung A. L.. 2001; Evaluation of a tetracycline-inducible promoter in Staphylococcus aureus in vitro and in vivo and its application in demonstrating the role of sigB in microcolony formation. Infect Immun69:7851–7857
    [Google Scholar]
  3. Chuard C., Lucet J. C., Rohner P., Herrmann M., Auckenthaler R., Waldvogel F. A., Lew D. P.. 1991; Resistance of Staphylococcus aureus recovered from infected foreign body in vivo to killing by antimicrobials. J Infect Dis163:1369–1373
    [Google Scholar]
  4. Clarke S. R., Brummell K. J., Horsburgh M. J., McDowell P. W., Mohamad S. A., Stapleton M. R., Acevedo J., Read R. C., Day N. P.. other authors 2006; Identification of in vivo -expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. J Infect Dis193:1098–1108
    [Google Scholar]
  5. Day N. P., Moore C. E., Enright M. C., Berendt A. R., Smith J. M., Murphy M. F., Peacock S. J., Spratt B. G., Feil E. J.. 2001; A link between virulence and ecological abundance in natural populations of Staphylococcus aureus . Science292:114–116
    [Google Scholar]
  6. Elliott D., Harrison E., Handley P. S., Ford S. K., Jaffray E., Mordan N., McNab R.. 2003; Prevalence of Csh-like fibrillar surface proteins among mitis group oral streptococci. Oral Microbiol Immunol18:114–120
    [Google Scholar]
  7. Fitzgerald J. R., Loughman A., Keane F., Brennan M., Knobel M., Higgins J., Visai L., Speziale P., Cox D., Foster T. J.. 2006; Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcgammaRIIa receptor. Mol Microbiol59:212–230
    [Google Scholar]
  8. Fitzpatrick F., Humphreys H., O'Gara J. P.. 2005; Evidence for icaADBC -independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol43:1973–1976
    [Google Scholar]
  9. Foster T. J.. 1998; Molecular genetic analysis of staphylococcal virulence. In Methods in Microbiology vol 27 pp433–454 Edited by Williams P. H., Ketley J., Salmond G. Oxford, UK: Elsevier;
  10. Foster T. J., Hook M.. 1998; Surface protein adhesins of Staphylococcus aureus . Trends Microbiol6:484–488
    [Google Scholar]
  11. Handley P. S., Carter P. L., Wyatt J. E., Hesketh L. M.. 1985; Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infect Immun47:217–227
    [Google Scholar]
  12. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Gotz F.. 1996; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol20:1083–1091
    [Google Scholar]
  13. Heilmann C., Hussain M., Peters G., Gotz F.. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol24:1013–1024
    [Google Scholar]
  14. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J.. 2002; σ B modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol184:5457–5467
    [Google Scholar]
  15. Kluytmans J., van Belkum A., Verbrugh H.. 1997; Nasal carriage of Staphylococcus aureus : epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev10:505–520
    [Google Scholar]
  16. Kreiswirth B. N., Lofdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P.. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature305:709–712
    [Google Scholar]
  17. Lindsay J. A., Moore C. E., Day N. P., Peacock S. J., Witney A. A., Stabler R. A., Husain S. E., Butcher P. D., Hinds J.. 2006; Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol188:669–676
    [Google Scholar]
  18. Mack D.. 1999; Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J Hosp Infect43:SupplS113–S125
    [Google Scholar]
  19. Mack D., Becker P., Chatterjee I., Dobinsky S., Knobloch J. K., Peters G., Rohde H., Herrmann M.. 2004; Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus : functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol294:203–212
    [Google Scholar]
  20. Mazmanian S. K., Ton-That H., Schneewind O.. 2001; Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus . Mol Microbiol40:1049–1057
    [Google Scholar]
  21. McAleese F. M., Walsh E. J., Sieprawska M., Potempa J., Foster T. J.. 2001; Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem276:29969–29978
    [Google Scholar]
  22. McNab R., Forbes H., Handley P. S., Loach D. M., Tannock G. W., Jenkinson H. F.. 1999; Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J Bacteriol181:3087–3095
    [Google Scholar]
  23. Navarre W. W., Schneewind O.. 1999; Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev63:174–229
    [Google Scholar]
  24. Ni Eidhin D., Perkins S., Francois P., Vaudaux P., Hook M., Foster T. J.. 1998; Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus . Mol Microbiol30:245–257
    [Google Scholar]
  25. Novick R.. 1967; Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus . Virology33:155–166
    [Google Scholar]
  26. O'Brien L. M., Walsh E. J., Massey R. C., Peacock S. J., Foster T. J.. 2002; Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol4:759–770
    [Google Scholar]
  27. Peacock S. J., de Silva I., Lowy F. D.. 2001; What determines nasal carriage of Staphylococcus aureus? . Trends Microbiol9:605–610
    [Google Scholar]
  28. Roche F. M., Massey R., Peacock S. J., Day N. P., Visai L., Speziale P., Lam A., Pallen M., Foster T. J.. 2003a; Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology149:643–654
    [Google Scholar]
  29. Roche F. M., Meehan M., Foster T. J.. 2003b; The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology149:2759–2767
    [Google Scholar]
  30. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K., Heilmann C., Herrmann M., Mack D.. 2005; Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol55:1883–1895
    [Google Scholar]
  31. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  32. Saravia-Otten P., Muller H. P., Arvidson S.. 1997; Transcription of Staphylococcus aureus fibronectin binding protein genes is negatively regulated by agr and an agr -independent mechanism. J Bacteriol179:5259–5263
    [Google Scholar]
  33. Savolainen K., Paulin L., Westerlund-Wikstrom B., Foster T. J., Korhonen T. K., Kuusela P.. 2001; Expression of pls , a gene closely associated with the mecA gene of methicillin-resistant Staphylococcus aureus , prevents bacterial adhesion in vitro . Infect Immun69:3013–3020
    [Google Scholar]
  34. Schaffer A. C., Solinga R. M., Cocchiaro J., Portoles M., Kiser K. B., Risley A., Randall S. M., Valtulina V., Speziale P.. 2006; Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect Immun74:2145–2153
    [Google Scholar]
  35. Telford J. L., Barocchi M. A., Margarit I., Rappuoli R., Grandi G.. 2006; Pili in Gram-positive pathogens. Nat Rev Microbiol4:509–519
    [Google Scholar]
  36. Toledo-Arana A., Merino N., Vergara-Irigaray M., Debarbouille M., Penades J. R., Lasa I.. 2005; Staphylococcus aureus develops an alternative, ica -independent biofilm in the absence of the arlRS two-component system. J Bacteriol187:5318–5329
    [Google Scholar]
  37. Vagner V., Dervyn E., Ehrlich S. D.. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiology144:3097–3104
    [Google Scholar]
  38. Weerkamp A. H., Handley P. S., Baars A., Slot J. W.. 1986; Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril. J Bacteriol165:746–755
    [Google Scholar]
  39. Zhang L., Fan F., Palmer L. M., Lonetto M. A., Petit C., Voelker L. L., St John A., Bankosky B., Rosenberg M., McDevitt D.. 2000; Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene255:297–305
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006676-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006676-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error