1887

Abstract

The major surface protein (MspTL) of , associated with periodontitis and endodontic infections, has been reported to induce proinflammatory mediators such as intercellular adhesion molecule (ICAM)-1, and interleukin (IL)-1, IL-6 and IL-8. The purpose of this study was to examine the role of MspTL in cell adhesion/migration and to identify its proinflammatory domains. Using the human monocytic cell line THP-1 and human dermal microvascular endothelial cells (HMEC-1), it was demonstrated that MspTL increased adhesion of monocytes to endothelial cells and transendothelial migration. To analyse the proinflammatory domains of the protein, four gene constructs covering different regions of MspTL were designed and expressed in using the expression vector pQE-30. Histidine-tagged recombinant proteins were purified using Ni-NTA agarose and polymyxin B agarose to remove LPS contamination. Recombinant truncated polypeptides were assessed for the ability to induce ICAM-1 and proinflammatory factors in THP-1 cells by real-time RT-PCR and ELISA. Of the four polypeptides, the one spanning the N-terminal 86 amino acids significantly induced ICAM-1, IL-1, IL-6, IL-8, tumour necrosis factor- (TNF-), cyclooxygenase (COX)-2, and prostaglandin E (PGE). The results indicate that MspTL may induce cell adhesion and inflammation via its N-terminal region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006650-0
2007-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2386.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006650-0&mimeType=html&fmt=ahah

References

  1. Al-Numani, D., Segura, M., Dore, M. & Gottschalk, M. ( 2003; ). Up-regulation of ICAM-1, CD11a/CD18 and CD11c/CD18 on human THP-1 monocytes stimulated by Streptococcus suis serotype 2. Clin Exp Immunol 133, 67–77.[CrossRef]
    [Google Scholar]
  2. Bagos, P. G., Liakopoulos, Th. D. & Hamodrakas, S. J. ( 2005; ). Evaluation of methods for predicting the topology of β-barrel outer membrane proteins and a consensus prediction method. BMC Bioinformatics 6, 7 [CrossRef]
    [Google Scholar]
  3. Champagne, C. M., Buchanan, W., Reddy, M. S., Preisser, J. S., Beck, J. D. & Offenbacher, S. ( 2003; ). Potential for gingival crevice fluid measures as predictors of risk for periodontal diseases. Periodontol 2000 31, 167–180.[CrossRef]
    [Google Scholar]
  4. Choi, B. K., Paster, B. J., Dewhirst, F. E. & Gobel, U. B. ( 1994; ). Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun 62, 1889–1895.
    [Google Scholar]
  5. Choi, B. K., Jung, J. H., Suh, H. Y., Yoo, Y. J., Cho, K. S., Chai, J. K. & Kim, C. K. ( 2001a; ). Activation of matrix metalloproteinase-2 by a novel oral spirochetal species Treponema lecithinolyticum. J Periodontol 72, 1594–1600.[CrossRef]
    [Google Scholar]
  6. Choi, B. K., Ohk, S. H., Lee, H. J., Kang, J. H., Jeong, G. J. & Yoo, Y. J. ( 2001b; ). Effects of whole cell sonicates of Treponema lecithinolyticum on osteoclast differentiation. J Periodontol 72, 1172–1177.[CrossRef]
    [Google Scholar]
  7. Correia, F. F., Plummer, A. R., Ellen, R. P., Wyss, C., Boches, S. K., Galvin, J. L., Paster, B. J. & Dewhirst, F. E. ( 2003; ). Two paralogous families of a two-gene subtilisin operon are widely distributed in oral treponemes. J Bacteriol 185, 6860–6869.[CrossRef]
    [Google Scholar]
  8. Dewhirst, F. E., Tamer, M. A., Ericson, R. E., Lau, C. N., Levanos, V. A., Boches, S. K., Galvin, J. L. & Paster, B. J. ( 2000; ). The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiol Immunol 15, 196–202.[CrossRef]
    [Google Scholar]
  9. Ding, Y., Uitto, V. J., Haapasalo, M., Lounatmaa, K., Konttinen, Y. T., Salo, T., Grenier, D. & Sorsa, T. ( 1996; ). Membrane components of Treponema denticola trigger proteinase release from human polymorphonuclear leukocytes. J Dent Res 75, 1986–1993.[CrossRef]
    [Google Scholar]
  10. Edwards, A. M., Jenkinson, H. F., Woodward, M. J. & Dymock, D. ( 2005; ). Binding properties and adhesion-mediating regions of the major sheath protein of Treponema denticola ATCC 35405. Infect Immun 73, 2891–2898.[CrossRef]
    [Google Scholar]
  11. Fenno, J. C., Hannam, P. M., Leung, W. K., Tamura, M., Uitto, V. J. & McBride, B. C. ( 1998; ). Cytopathic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola. Infect Immun 66, 1869–1877.
    [Google Scholar]
  12. Gardy, J. L., Laird, M. R., Chen, F., Rey, S., Walsh, C. J., Ester, M. & Brinkman, F. S. L. ( 2005; ). psortb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21, 617–623.[CrossRef]
    [Google Scholar]
  13. Gorska, R., Gregorek, H., Kowalski, J., Laskus-Perendyk, A., Syczewska, M. & Madalinski, K. ( 2003; ). Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. J Clin Periodontol 30, 1046–1052.[CrossRef]
    [Google Scholar]
  14. Harokopakis, E., Albzreh, M. H., Martin, M. H. & Hajishengallis, G. ( 2006; ). TLR2 transmodulates monocyte adhesion and transmigration via Rac1- and PI3K-mediated inside-out signaling in response to Porphyromonas gingivalis fimbriae. J Immunol 176, 7645–7656.[CrossRef]
    [Google Scholar]
  15. Jones, D. T. ( 1999; ). Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195–202.[CrossRef]
    [Google Scholar]
  16. Kabsch, W. & Sander, C. ( 1983; ). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.[CrossRef]
    [Google Scholar]
  17. Lee, S. H., Kim, K. K. & Choi, B. K. ( 2005; ). Upregulation of intercellular adhesion molecule 1 and proinflammatory cytokines by the major surface proteins of Treponema maltophilum and Treponema lecithinolyticum, the phylogenetic group IV oral spirochetes associated with periodontitis and endodontic infections. Infect Immun 73, 268–276.[CrossRef]
    [Google Scholar]
  18. Moter, A., Riep, B., Haban, V., Heuner, K., Siebert, G., Berning, M., Wyss, C., Ehmke, B., Flemmig, T. F. & Gobel, U. B. ( 2006; ). Molecular epidemiology of oral treponemes in patients with periodontitis and in periodontitis-resistant subjects. J Clin Microbiol 44, 3078–3085.[CrossRef]
    [Google Scholar]
  19. Sakai, A., Ohshima, M., Sugano, N., Otsuka, K. & Ito, K. ( 2006; ). Profiling the cytokines in gingival crevicular fluid using a cytokine antibody array. J Periodontol 77, 856–864.[CrossRef]
    [Google Scholar]
  20. Wang, Q., Ko, K. S., Kapus, A., McCulloch, C. A. & Ellen, R. P. ( 2001; ). A spirochete surface protein uncouples store-operated calcium channels in fibroblasts: a novel cytotoxic mechanism. J Biol Chem 276, 23056–23064.[CrossRef]
    [Google Scholar]
  21. Wang, P. L., Ohura, K., Fujii, T., Oido-Mori, M., Kowashi, Y., Kikuchi, M., Suetsugu, Y. & Tanaka, J. ( 2003; ). DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun 305, 970–973.[CrossRef]
    [Google Scholar]
  22. Wyss, C., Choi, B. K., Schupbach, P., Moter, A., Guggenheim, B. & Gobel, U. B. ( 1999; ). Treponema lecithinolyticum sp. nov., a small saccharolytic spirochaete with phospholipase A and C activities associated with periodontal diseases. Int J Syst Bacteriol 49, 1329–1339.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006650-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006650-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error