expression technology identifies a type VI secretion system locus in that is induced upon invasion of macrophages Free

Abstract

The Gram-negative proteobacterium can survive and multiply within a variety of eukaryotic cells, including macrophages. This property is believed to be important for its ability to cause the disease melioidosis in a wide range of animal species, including humans. To identify determinants that are important for the ability of to survive within macrophages, expression technology (IVET) was employed. Several putative macrophage-inducible genes were identified that are likely to contribute to the virulence of , including three genes (-5, -5 and -5) located within the same type VI secretion system cluster (-5), , encoding a natural resistance-associated macrophage protein (NRAMP)-like manganese ion transporter, and a haem acquisition gene, . The macrophage-inducibility of the -5 gene cluster was confirmed by reporter gene analysis. Construction of -5 and null mutants indicated that expression of the -5 unit and the operon were not required for intramacrophage survival. A further five units were identified within the genome that, together with -5, account for approximately 2.3 % of the total genome size. The presence of six type VI secretion systems in this organism is likely to be an important factor in making this bacterium such a versatile pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006585-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2689.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006585-0&mimeType=html&fmt=ahah

References

  1. Alice A. F., Lopez C. S., Lowe C. A., Ledesma M. A., Crosa J. H. 2006; Genetic and transcriptional analysis of the siderophore malleobactin biosynthesis and transport genes in the human pathogen Burkholderia pseudomallei K96243. J Bacteriol 188:1551–1566
    [Google Scholar]
  2. Andrews S. C., Robinson A. K., Rodriguez-Quinones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237
    [Google Scholar]
  3. Angelichio M. J., Camilli A. 2002; In vivo expression technology. Infect Immun 70:6518–6523
    [Google Scholar]
  4. Attree O., Attree I. 2001; A second type III secretion system in Burkholderia pseudomallei : who is the real culprit?. Microbiology 147:3197–3199
    [Google Scholar]
  5. Autret N., Charbit A. 2005; Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol Rev 29:703–717
    [Google Scholar]
  6. Breitbach K., Rottner K., Klocke S., Rohde M., Jenzora A., Wehland J., Steinmetz I. 2003; Actin-based motility of Burkholderia pseudomallei involves the Arp 2/3 complex, but not N-WASP and Ena/VASP proteins. Cell Microbiol 5:385–393
    [Google Scholar]
  7. Chaowagul W., Suputtamongkol Y., Dance D. A. B., Rajchanuvong A., Pattaraarechachai J., White N. J. 1993; Relapse in melioidosis incidence and risk factors. J Infect Dis 168:1181–1185
    [Google Scholar]
  8. Christie P. J., Amakuri K., Krishnamoorthy V., Jakubowski S., Cascales E. 2005; Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485
    [Google Scholar]
  9. Clowes R. C., Hayes W. 1968 Experiments in Microbial Genetics Oxford, UK: Blackwell Scientific;
  10. Cornelis G. R. 2006; The type III secretion injectisome. Nat Rev Microbiol 4:811–825
    [Google Scholar]
  11. Dance D. A. B. 1991; Melioidosis: the tip of the iceberg?. Clin Microbiol Rev 4:52–60
    [Google Scholar]
  12. Das S., Chaudhuri K. 2003; Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol 3:287–300
    [Google Scholar]
  13. de Lorenzo V., Timmis K. N. 1994; Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn 5 - and Tn 10 -derived minitransposons. Methods Enzymol 235:386–405
    [Google Scholar]
  14. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  15. DeShazer D., Woods D. E. 1996; Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. Biotechniques 20:762–764
    [Google Scholar]
  16. Ekaza E., Teyssier J., Ouahrani-Bettache S., Liautard J.-P., Kohler S. 2001; Characterization of Brucella suis clpB and clpAB mutants and participation of the genes in stress responses. J Bacteriol 183:2677–2681
    [Google Scholar]
  17. Elsinghorst E. A. 1994; Measurement of invasion by gentamicin resistance. Methods Enzymol 236:405–420
    [Google Scholar]
  18. Forbes J. R., Gros P. 2001; Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9:397–403
    [Google Scholar]
  19. Genco C. A., Dixon D. W. 2001; Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11
    [Google Scholar]
  20. Hanson P. I., Whiteheart S. W. 2005; AAA+ proteins: have engine will work. Nat Rev Mol Cell Biol 6:519–529
    [Google Scholar]
  21. Herrero M., de Lorenzo V., Timmis K. N. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172:6557–6567
    [Google Scholar]
  22. Holden M. T. G., Titball R. W., Peacock S. J., Cerdeno-Tarraga A. M., Atkins T., Crossman L. C., Pitt T., Churcher C., Mungall K. other authors 2004; Genome plasticity of the causative agent of melioidosis, Burkholderia pseudomallei . Proc Natl Acad Sci U S A 101:14240–14245
    [Google Scholar]
  23. Inglis T. J. J., Rigby P., Robertson T. A., Dutton N. S., Henderson M., Chang B. J. 2000; Interaction between Burkholderia pseudomallei and Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape. Infect Immun 68:1681–1686
    [Google Scholar]
  24. Jones A. L., Beveridge T. J., Woods D. E. 1996; Intracellular survival of Burkholderia pseudomallei . Infect Immun 64:782–790
    [Google Scholar]
  25. Kespichayawattana W., Rattanachetkul S., Wanun T., Utaisincharoen P., Sirisinha S. 2000; Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68:5377–5384
    [Google Scholar]
  26. Lowe C. A. 2001; Iron regulation in Burkholderia cepacia and Burkholderia pseudomallei . PhD thesis University of Sheffield;
  27. Lowe C. A., Asghar A. H., Shalom G., Shaw J. G., Thomas M. S. 2001; The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. Microbiology 147:1303–1314
    [Google Scholar]
  28. Mahan M. J., Tobias J. W., Slauch J. M., Hanna P. C., Collier R. J., Mekalanos J. J. 1995; Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A 92:669–673
    [Google Scholar]
  29. Metcalf W. W., Jiang W., Wanner B. L. 1994; Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K γ origin plasmids at different copy numbers. Gene 138:1–7
    [Google Scholar]
  30. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press;
  31. Moore R. A., Reckseidler-Zenteno S., Kim H., Nierman W., Yu Y., Tuanyok A., Warawa J., DeShazer D., Woods D. E. 2004; Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei . Infect Immun 72:4172–4187
    [Google Scholar]
  32. Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordonez C. L. other authors 2006; A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530
    [Google Scholar]
  33. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V. 1999; AAA+: a class of chaperone-like ATPases associated with the assembly of protein complexes. Genome Res 9:27–43
    [Google Scholar]
  34. Ngauy V., Lemeshev Y., Sadkowski L., Crawford G. 2005; Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43:970–972
    [Google Scholar]
  35. Nierman W. C., DeShazer D., Kim H. S., Tettelin H., Nelson K. E., Feldblyum T., Ulrich R. L., Ronning C. M., Brinkac L. M. other authors 2004; Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101:14246–14251
    [Google Scholar]
  36. Parsons D. A., Heffron F. 2005; sciS , an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 73:4338–4345
    [Google Scholar]
  37. Pascual A. 1995; Uptake and intracellular activity of antimicrobial agents in phagocytic cells. Rev Med Microbiol 6:228–235
    [Google Scholar]
  38. Pilatz S., Breitbach K., Hein N., Fehlhaber B., Schulze J., Brenneke B., Eberl L., Steinmetz I. 2006; Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun 74:3576–3586
    [Google Scholar]
  39. Pope C. D., O'Connell W. A., Cianciotto N. P. 1996; Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection. Infect Immun 64:629–636
    [Google Scholar]
  40. Potvin E., Lehoux D. E., Kukavica-Ibrulj I., Richard K. L., Sanschagrin F., Lau G. W., Levesque R. C. 2003; In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial agents. Environ Microbiol 5:1294–1308
    [Google Scholar]
  41. Pruksachartvuthi S., Aswapokee N., Thankerngool K. 1990; Survival of Pseudomonas pseudomallei in human phagocytes. J Med Microbiol 31:109–114
    [Google Scholar]
  42. Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J. 2006; Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533
    [Google Scholar]
  43. Rainbow L., Hart C. A., Winstanley C. 2002; Distribution of type III secretion gene clusters in Burkholderia pseudomallei , B. thailandensis and B. mallei . J Med Microbiol 51:374–384
    [Google Scholar]
  44. Rao P. S., Yamada Y., Tan Y. P., Leung K. Y. 2004; Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 53:573–586
    [Google Scholar]
  45. Ribot W. J., Ulrich R. L. 2006; The animal pathogen-like type III secretion system is required for the intracellular survival of Burkholderia mallei within J774.2 macrophages. Infect Immun 74:4349–4353
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
  47. Schlieker C., Zentgraf H., Dersch P., Mogk A. 2005; ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem 386:1115–1127
    [Google Scholar]
  48. Segal G., Feldman M., Zusman T. 2005; The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii . FEMS Microbiol Rev 29:65–81
    [Google Scholar]
  49. Sexton J. A., Miller J. L., Yoneda A., Kehl-Fie T. E., Vogel J. P. 2004; Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun 72:5983–5992
    [Google Scholar]
  50. Shalom G., Shaw J. G., Thomas M. S. 2000; pGSTp: an IVET compatible promoter probe vector conferring resistance to trimethoprim. Biotechniques 29:954–958
    [Google Scholar]
  51. Skaar E. P., Humayun M., Bae T., DeBord K. L., Schneewind O. 2004; Iron source preference of Staphylococcus aureus infection. Science 305:1626–1628
    [Google Scholar]
  52. Stevens M. P., Wood M. W., Taylor L. A., Monaghan P., Hawes P., Jones P. W., Wallis T. S., Galyov E. E. 2002; An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 46:649–659
    [Google Scholar]
  53. Stevens M. P., Friebel A., Taylor L. A., Wood M. W., Brown P. J., Hardt W.-D., Galyov E. E. 2003; A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J Bacteriol 185:4992–4996
    [Google Scholar]
  54. Stevens M. P., Haque A., Atkins T., Hill J., Wood M. W., Easton A., Nelson M., Underwood-Fowler C., Titball R. W. other authors 2004; Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 150:2669–2676
    [Google Scholar]
  55. Stevens M. P., Stevens J. M., Jeng R. L., Taylor L. A., Wood M. W., Gawes P., Monaghan P., Welch M. D., Galyov E. E. 2005; Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei . Mol Microbiol 56:40–53
    [Google Scholar]
  56. Torres A. G., Redford P., Welch R. A., Payne S. M. 2001; TonB-dependent systems of uropathogenic Escherichia coli : aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69:6179–6185
    [Google Scholar]
  57. Tuanyok A., Kim H. S., Nierman W. C., Yu Y., Dunbar J., Moore R. A., Baker P., Tom M., Ling J. M. L., Woods D. E. 2005; Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. FEMS Microbiol Lett 252:327–335
    [Google Scholar]
  58. Ulrich R. L., DeShazer D. 2004; Type III secretion: a virulence factor delivery system essential for the pathogenicity of Burkholderia mallei . Infect Immun 72:1150–1154
    [Google Scholar]
  59. VanRheenen S. M., Dumenil G., Isberg R. R. 2004; IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun 72:5972–5982
    [Google Scholar]
  60. Wandersman C., Stojiljkovic I. 2000; Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 3:215–220
    [Google Scholar]
  61. Wang Y.-D., Zhao S., Hill C. W. 1998; Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli . J Bacteriol 180:4102–4110
    [Google Scholar]
  62. Warawa J., Woods D. E. 2005; Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett 242:101–108
    [Google Scholar]
  63. White N. J. 2003; Melioidosis. Lancet 361:1715–1722
    [Google Scholar]
  64. Wyckoff E. E., Lopreato G. F., Tipton K. A., Payne S. M. 2005; Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 187:5658–5664
    [Google Scholar]
  65. Young G. M., Miller V. L. 1997; Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol Microbiol 25:319–328
    [Google Scholar]
  66. Zaharik M. L., Finlay B. B. 2004; Mn2+ and bacterial pathogenesis. Front Biosci 9:1035–1042
    [Google Scholar]
  67. Zusman T., Friedman M., Halperin E., Segal G. 2004; Characterization of the icmF and icmH genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells. Infect Immun 72:3398–3409
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006585-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006585-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed