1887

Abstract

The Gram-negative proteobacterium can survive and multiply within a variety of eukaryotic cells, including macrophages. This property is believed to be important for its ability to cause the disease melioidosis in a wide range of animal species, including humans. To identify determinants that are important for the ability of to survive within macrophages, expression technology (IVET) was employed. Several putative macrophage-inducible genes were identified that are likely to contribute to the virulence of , including three genes (-5, -5 and -5) located within the same type VI secretion system cluster (-5), , encoding a natural resistance-associated macrophage protein (NRAMP)-like manganese ion transporter, and a haem acquisition gene, . The macrophage-inducibility of the -5 gene cluster was confirmed by reporter gene analysis. Construction of -5 and null mutants indicated that expression of the -5 unit and the operon were not required for intramacrophage survival. A further five units were identified within the genome that, together with -5, account for approximately 2.3 % of the total genome size. The presence of six type VI secretion systems in this organism is likely to be an important factor in making this bacterium such a versatile pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006585-0
2007-08-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2689.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006585-0&mimeType=html&fmt=ahah

References

  1. Alice, A. F., Lopez, C. S., Lowe, C. A., Ledesma, M. A. & Crosa, J. H. ( 2006; ). Genetic and transcriptional analysis of the siderophore malleobactin biosynthesis and transport genes in the human pathogen Burkholderia pseudomallei K96243. J Bacteriol 188, 1551–1566.[CrossRef]
    [Google Scholar]
  2. Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. ( 2003; ). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237.[CrossRef]
    [Google Scholar]
  3. Angelichio, M. J. & Camilli, A. ( 2002; ). In vivo expression technology. Infect Immun 70, 6518–6523.[CrossRef]
    [Google Scholar]
  4. Attree, O. & Attree, I. ( 2001; ). A second type III secretion system in Burkholderia pseudomallei: who is the real culprit?. Microbiology 147, 3197–3199.
    [Google Scholar]
  5. Autret, N. & Charbit, A. ( 2005; ). Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol Rev 29, 703–717.[CrossRef]
    [Google Scholar]
  6. Breitbach, K., Rottner, K., Klocke, S., Rohde, M., Jenzora, A., Wehland, J. & Steinmetz, I. ( 2003; ). Actin-based motility of Burkholderia pseudomallei involves the Arp 2/3 complex, but not N-WASP and Ena/VASP proteins. Cell Microbiol 5, 385–393.[CrossRef]
    [Google Scholar]
  7. Chaowagul, W., Suputtamongkol, Y., Dance, D. A. B., Rajchanuvong, A., Pattaraarechachai, J. & White, N. J. ( 1993; ). Relapse in melioidosis incidence and risk factors. J Infect Dis 168, 1181–1185.[CrossRef]
    [Google Scholar]
  8. Christie, P. J., Amakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. ( 2005; ). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59, 451–485.[CrossRef]
    [Google Scholar]
  9. Clowes, R. C. & Hayes, W. ( 1968; ). Experiments in Microbial Genetics. Oxford, UK: Blackwell Scientific.
  10. Cornelis, G. R. ( 2006; ). The type III secretion injectisome. Nat Rev Microbiol 4, 811–825.[CrossRef]
    [Google Scholar]
  11. Dance, D. A. B. ( 1991; ). Melioidosis: the tip of the iceberg?. Clin Microbiol Rev 4, 52–60.
    [Google Scholar]
  12. Das, S. & Chaudhuri, K. ( 2003; ). Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol 3, 287–300.
    [Google Scholar]
  13. de Lorenzo, V. & Timmis, K. N. ( 1994; ). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235, 386–405.
    [Google Scholar]
  14. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  15. DeShazer, D. & Woods, D. E. ( 1996; ). Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. Biotechniques 20, 762–764.
    [Google Scholar]
  16. Ekaza, E., Teyssier, J., Ouahrani-Bettache, S., Liautard, J.-P. & Kohler, S. ( 2001; ). Characterization of Brucella suis clpB and clpAB mutants and participation of the genes in stress responses. J Bacteriol 183, 2677–2681.[CrossRef]
    [Google Scholar]
  17. Elsinghorst, E. A. ( 1994; ). Measurement of invasion by gentamicin resistance. Methods Enzymol 236, 405–420.
    [Google Scholar]
  18. Forbes, J. R. & Gros, P. ( 2001; ). Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9, 397–403.[CrossRef]
    [Google Scholar]
  19. Genco, C. A. & Dixon, D. W. ( 2001; ). Emerging strategies in microbial haem capture. Mol Microbiol 39, 1–11.[CrossRef]
    [Google Scholar]
  20. Hanson, P. I. & Whiteheart, S. W. ( 2005; ). AAA+ proteins: have engine will work. Nat Rev Mol Cell Biol 6, 519–529.[CrossRef]
    [Google Scholar]
  21. Herrero, M., de Lorenzo, V. & Timmis, K. N. ( 1990; ). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172, 6557–6567.
    [Google Scholar]
  22. Holden, M. T. G., Titball, R. W., Peacock, S. J., Cerdeno-Tarraga, A. M., Atkins, T., Crossman, L. C., Pitt, T., Churcher, C., Mungall, K. & other authors ( 2004; ). Genome plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101, 14240–14245.[CrossRef]
    [Google Scholar]
  23. Inglis, T. J. J., Rigby, P., Robertson, T. A., Dutton, N. S., Henderson, M. & Chang, B. J. ( 2000; ). Interaction between Burkholderia pseudomallei and Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape. Infect Immun 68, 1681–1686.[CrossRef]
    [Google Scholar]
  24. Jones, A. L., Beveridge, T. J. & Woods, D. E. ( 1996; ). Intracellular survival of Burkholderia pseudomallei. Infect Immun 64, 782–790.
    [Google Scholar]
  25. Kespichayawattana, W., Rattanachetkul, S., Wanun, T., Utaisincharoen, P. & Sirisinha, S. ( 2000; ). Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68, 5377–5384.[CrossRef]
    [Google Scholar]
  26. Lowe, C. A. ( 2001; ). Iron regulation in Burkholderia cepacia and Burkholderia pseudomallei. PhD thesis, University of Sheffield.
  27. Lowe, C. A., Asghar, A. H., Shalom, G., Shaw, J. G. & Thomas, M. S. ( 2001; ). The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. Microbiology 147, 1303–1314.
    [Google Scholar]
  28. Mahan, M. J., Tobias, J. W., Slauch, J. M., Hanna, P. C., Collier, R. J. & Mekalanos, J. J. ( 1995; ). Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A 92, 669–673.[CrossRef]
    [Google Scholar]
  29. Metcalf, W. W., Jiang, W. & Wanner, B. L. ( 1994; ). Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kγ origin plasmids at different copy numbers. Gene 138, 1–7.[CrossRef]
    [Google Scholar]
  30. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press.
  31. Moore, R. A., Reckseidler-Zenteno, S., Kim, H., Nierman, W., Yu, Y., Tuanyok, A., Warawa, J., DeShazer, D. & Woods, D. E. ( 2004; ). Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Infect Immun 72, 4172–4187.[CrossRef]
    [Google Scholar]
  32. Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordonez, C. L. & other authors ( 2006; ). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530.[CrossRef]
    [Google Scholar]
  33. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. ( 1999; ). AAA+: a class of chaperone-like ATPases associated with the assembly of protein complexes. Genome Res 9, 27–43.
    [Google Scholar]
  34. Ngauy, V., Lemeshev, Y., Sadkowski, L. & Crawford, G. ( 2005; ). Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43, 970–972.[CrossRef]
    [Google Scholar]
  35. Nierman, W. C., DeShazer, D., Kim, H. S., Tettelin, H., Nelson, K. E., Feldblyum, T., Ulrich, R. L., Ronning, C. M., Brinkac, L. M. & other authors ( 2004; ). Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101, 14246–14251.[CrossRef]
    [Google Scholar]
  36. Parsons, D. A. & Heffron, F. ( 2005; ). sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 73, 4338–4345.[CrossRef]
    [Google Scholar]
  37. Pascual, A. ( 1995; ). Uptake and intracellular activity of antimicrobial agents in phagocytic cells. Rev Med Microbiol 6, 228–235.[CrossRef]
    [Google Scholar]
  38. Pilatz, S., Breitbach, K., Hein, N., Fehlhaber, B., Schulze, J., Brenneke, B., Eberl, L. & Steinmetz, I. ( 2006; ). Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun 74, 3576–3586.[CrossRef]
    [Google Scholar]
  39. Pope, C. D., O'Connell, W. A. & Cianciotto, N. P. ( 1996; ). Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection. Infect Immun 64, 629–636.
    [Google Scholar]
  40. Potvin, E., Lehoux, D. E., Kukavica-Ibrulj, I., Richard, K. L., Sanschagrin, F., Lau, G. W. & Levesque, R. C. ( 2003; ). In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial agents. Environ Microbiol 5, 1294–1308.[CrossRef]
    [Google Scholar]
  41. Pruksachartvuthi, S., Aswapokee, N. & Thankerngool, K. ( 1990; ). Survival of Pseudomonas pseudomallei in human phagocytes. J Med Microbiol 31, 109–114.[CrossRef]
    [Google Scholar]
  42. Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., Heidelberg, J. F. & Mekalanos, J. J. ( 2006; ). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103, 1528–1533.[CrossRef]
    [Google Scholar]
  43. Rainbow, L., Hart, C. A. & Winstanley, C. ( 2002; ). Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei. J Med Microbiol 51, 374–384.
    [Google Scholar]
  44. Rao, P. S., Yamada, Y., Tan, Y. P. & Leung, K. Y. ( 2004; ). Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 53, 573–586.[CrossRef]
    [Google Scholar]
  45. Ribot, W. J. & Ulrich, R. L. ( 2006; ). The animal pathogen-like type III secretion system is required for the intracellular survival of Burkholderia mallei within J774.2 macrophages. Infect Immun 74, 4349–4353.[CrossRef]
    [Google Scholar]
  46. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  47. Schlieker, C., Zentgraf, H., Dersch, P. & Mogk, A. ( 2005; ). ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem 386, 1115–1127.
    [Google Scholar]
  48. Segal, G., Feldman, M. & Zusman, T. ( 2005; ). The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev 29, 65–81.[CrossRef]
    [Google Scholar]
  49. Sexton, J. A., Miller, J. L., Yoneda, A., Kehl-Fie, T. E. & Vogel, J. P. ( 2004; ). Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun 72, 5983–5992.[CrossRef]
    [Google Scholar]
  50. Shalom, G., Shaw, J. G. & Thomas, M. S. ( 2000; ). pGSTp: an IVET compatible promoter probe vector conferring resistance to trimethoprim. Biotechniques 29, 954–958.
    [Google Scholar]
  51. Skaar, E. P., Humayun, M., Bae, T., DeBord, K. L. & Schneewind, O. ( 2004; ). Iron source preference of Staphylococcus aureus infection. Science 305, 1626–1628.[CrossRef]
    [Google Scholar]
  52. Stevens, M. P., Wood, M. W., Taylor, L. A., Monaghan, P., Hawes, P., Jones, P. W., Wallis, T. S. & Galyov, E. E. ( 2002; ). An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 46, 649–659.[CrossRef]
    [Google Scholar]
  53. Stevens, M. P., Friebel, A., Taylor, L. A., Wood, M. W., Brown, P. J., Hardt, W.-D. & Galyov, E. E. ( 2003; ). A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J Bacteriol 185, 4992–4996.[CrossRef]
    [Google Scholar]
  54. Stevens, M. P., Haque, A., Atkins, T., Hill, J., Wood, M. W., Easton, A., Nelson, M., Underwood-Fowler, C., Titball, R. W. & other authors ( 2004; ). Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 150, 2669–2676.[CrossRef]
    [Google Scholar]
  55. Stevens, M. P., Stevens, J. M., Jeng, R. L., Taylor, L. A., Wood, M. W., Gawes, P., Monaghan, P., Welch, M. D. & Galyov, E. E. ( 2005; ). Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol Microbiol 56, 40–53.[CrossRef]
    [Google Scholar]
  56. Torres, A. G., Redford, P., Welch, R. A. & Payne, S. M. ( 2001; ). TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69, 6179–6185.[CrossRef]
    [Google Scholar]
  57. Tuanyok, A., Kim, H. S., Nierman, W. C., Yu, Y., Dunbar, J., Moore, R. A., Baker, P., Tom, M., Ling, J. M. L. & Woods, D. E. ( 2005; ). Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. FEMS Microbiol Lett 252, 327–335.[CrossRef]
    [Google Scholar]
  58. Ulrich, R. L. & DeShazer, D. ( 2004; ). Type III secretion: a virulence factor delivery system essential for the pathogenicity of Burkholderia mallei. Infect Immun 72, 1150–1154.[CrossRef]
    [Google Scholar]
  59. VanRheenen, S. M., Dumenil, G. & Isberg, R. R. ( 2004; ). IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun 72, 5972–5982.[CrossRef]
    [Google Scholar]
  60. Wandersman, C. & Stojiljkovic, I. ( 2000; ). Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 3, 215–220.[CrossRef]
    [Google Scholar]
  61. Wang, Y.-D., Zhao, S. & Hill, C. W. ( 1998; ). Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J Bacteriol 180, 4102–4110.
    [Google Scholar]
  62. Warawa, J. & Woods, D. E. ( 2005; ). Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett 242, 101–108.[CrossRef]
    [Google Scholar]
  63. White, N. J. ( 2003; ). Melioidosis. Lancet 361, 1715–1722.[CrossRef]
    [Google Scholar]
  64. Wyckoff, E. E., Lopreato, G. F., Tipton, K. A. & Payne, S. M. ( 2005; ). Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 187, 5658–5664.[CrossRef]
    [Google Scholar]
  65. Young, G. M. & Miller, V. L. ( 1997; ). Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol Microbiol 25, 319–328.[CrossRef]
    [Google Scholar]
  66. Zaharik, M. L. & Finlay, B. B. ( 2004; ). Mn2+ and bacterial pathogenesis. Front Biosci 9, 1035–1042.[CrossRef]
    [Google Scholar]
  67. Zusman, T., Friedman, M., Halperin, E. & Segal, G. ( 2004; ). Characterization of the icmF and icmH genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells. Infect Immun 72, 3398–3409.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006585-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006585-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2689–2699

Organization of tss units within the genomes of Gram-negative proteobacteria.

Core components of the tss unit.

tss-associated genes ( ).

Standardization of nomenclature for type VI secretion systems.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error