1887

Abstract

Novel plasmids were constructed for the analysis of DNA fragments from the rumen bacterium . Five previously unidentified promoters were characterized using a novel primer extension method to identify transcription start sites. The genes downstream of these promoters were not identified, and their activity in expression of genomic traits in wild-type remains putative. Comparison with promoters from this and closely related species revealed a consensus sequence resembling the binding motif for the RNA polymerase -like factor complex. Consensus −35 and −10 sequences within these elements were and AA respectively, interspaced by 15–16 bp. The consensus for the −10 element was extended by one nucleotide upstream and downstream of the standard hexamer (indicated in bold). Promoter strengths were measured by reverse transcription quantitative PCR and -glucuronidase assays. No correlation was found between the composition and context of elements within promoters, and promoter strength. However, a mutation within the −35 element of one promoter revealed that transcriptional strength and choice of transcription start site were sensitive to this single nucleotide change.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006502-0
2007-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3071.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006502-0&mimeType=html&fmt=ahah

References

  1. Agarwal, N. & Tyagi, A. K. ( 2003; ). Role of 5′-TGN-3′ motif in the interaction of mycobacterial RNA polymerase with a promoter of ‘extended −10' class. FEMS Microbiol Lett 225, 75–83.[CrossRef]
    [Google Scholar]
  2. Asanuma, N., Kawato, M., Ohkawara, S. & Hino, T. ( 2003; ). Characterization and transcription of the genes encoding enzymes involved in butyrate production in Butyrivibrio fibrisolvens. Curr Microbiol 47, 203–207.[CrossRef]
    [Google Scholar]
  3. Bailey, T. L. & Gribskov, M. ( 1998; ). Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54.[CrossRef]
    [Google Scholar]
  4. Bannantine, J. P., Barletta, R. G., Thoen, C. O. & Andrews, R. E., Jr ( 1997; ). Identification of Mycobacterium paratuberculosis gene expression signals. Microbiology 143, 921–928.[CrossRef]
    [Google Scholar]
  5. Barker, M. M., Gaal, T., Josaitis, C. A. & Gourse, R. L. ( 2001; ). Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305, 673–688.[CrossRef]
    [Google Scholar]
  6. Barnell, W. O., Liu, J., Hesman, T. L., O'Neill, M. C. & Conway, T. ( 1992; ). The Zymomonas mobilis glf, zwf, edd, and glk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region. J Bacteriol 174, 2816–2823.
    [Google Scholar]
  7. Bayley, D. P., Rocha, E. R. & Smith, C. J. ( 2000; ). Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193, 149–154.[CrossRef]
    [Google Scholar]
  8. Beard, C. E., Hefford, M. A., Forster, R. J., Sontakke, S., Teather, R. M. & Gregg, K. ( 1995; ). A stable and efficient transformation system for Butyrivibrio fibrisolvens OB156. Curr Microbiol 30, 105–109.[CrossRef]
    [Google Scholar]
  9. Beard, C. E., Gregg, K., Kalmokoff, M. & Teather, R. M. ( 2000; ). Construction of a promoter-rescue plasmid for Butyrivibrio fibrisolvens and its use in characterization of a flagellin promoter. Curr Microbiol 40, 164–168.[CrossRef]
    [Google Scholar]
  10. Belyaeva, T., Griffiths, L., Minchin, S., Cole, J. & Busby, S. ( 1993; ). The Escherichia coli cysG promoter belongs to the ‘extended −10’ class of bacterial promoters. Biochem J 296, 851–857.
    [Google Scholar]
  11. Box, G. E. P., Hunter, W. G. & Hunter, J. S. ( 1978; ). Statistics for Experimenters. New York: John Wiley & Sons.
  12. Breslauer, K. J., Frank, R., Blocker, H. & Marky, L. A. ( 1986; ). Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83, 3746–3750.[CrossRef]
    [Google Scholar]
  13. Brooker, J. D., Lockington, R. A., Attwood, G. T., Langridge, P., Nield, J. K. & Langridge, U. ( 1989; ). Engineering ruminal flora for improved protein quality. In The Biology of Wool and Hair, pp. 425–440. Edited by G. E. Rogers, P. J. Reis, K. A. Ward & R. C. Marshal. London: Chapman & Hall.
  14. Brosius, J., Cate, R. L. & Perlmutter, A. P. ( 1982; ). Precise location of two promoters for the β-lactamase gene of pBR322. S1 mapping of ribonucleic acid isolated from Escherichia coli or synthesized in vitro. J Biol Chem 257, 9205–9210.
    [Google Scholar]
  15. Burr, T., Mitchell, J., Kolb, A., Minchin, S. & Busby, S. ( 2000; ). DNA sequence elements located immediately upstream of the −10 hexamer in Escherichia coli promoters: a systematic study. Nucleic Acids Res 28, 1864–1870.[CrossRef]
    [Google Scholar]
  16. Bustin, S. A. ( 2000; ). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25, 169–193.[CrossRef]
    [Google Scholar]
  17. Chan, B. & Busby, S. ( 1989; ). Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase. Gene 84, 227–236.[CrossRef]
    [Google Scholar]
  18. Chatterji, D. & Ojha, A. K. ( 2001; ). Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4, 160–165.[CrossRef]
    [Google Scholar]
  19. Dai, X. & Rothman-Denes, L. B. ( 1999; ). DNA structure and transcription. Curr Opin Microbiol 2, 126–130.[CrossRef]
    [Google Scholar]
  20. Dong, X. R., Li, S. F. & DeMoss, J. A. ( 1992; ). Upstream sequence elements required for NarL-mediated activation of transcription from the narGHJI promoter of Escherichia coli. J Biol Chem 267, 14122–14128.
    [Google Scholar]
  21. Dower, W. J., Miller, J. F. & Ragsdale, C. W. ( 1988; ). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16, 6127–6145.[CrossRef]
    [Google Scholar]
  22. Estrem, S. T., Gaal, T., Ross, W. & Gourse, R. L. ( 1998; ). Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A 95, 9761–9766.[CrossRef]
    [Google Scholar]
  23. Felsenstein, J. ( 1989; ). phylip – Phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  24. Forster, R. J., Teather, R. M., Gong, J. & Deng, S. J. ( 1996; ). 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol 23, 218–222.[CrossRef]
    [Google Scholar]
  25. Gaal, T., Ross, W., Estrem, S. T., Nguyen, L. H., Burgess, R. R. & Gourse, R. L. ( 2001; ). Promoter recognition and discrimination by Eσ s RNA polymerase. Mol Microbiol 42, 939–954.[CrossRef]
    [Google Scholar]
  26. Gabrielian, A. E., Landsman, D. & Bolshoy, A. ( 1999; ). Curved DNA in promoter sequences. In Silico Biol 1, 183–196.
    [Google Scholar]
  27. Ghosh, D. ( 1998; ). OOTFD (Object-Oriented Transcription Factors Database): an object-oriented successor to TFD. Nucleic Acids Res 26, 360–362.[CrossRef]
    [Google Scholar]
  28. Ghosh, D. ( 2000; ). Object-oriented transcription factors database (ooTFD). Nucleic Acids Res 28, 308–310.[CrossRef]
    [Google Scholar]
  29. Gibson, T. J. ( 1984; ). Studies on the Epstein–Barr Virus Genome. PhD thesis, University of Cambridge.
  30. Glanemann, C., Loos, A., Gorret, N., Willis, L. B., O'Brien, X. M., Lessard, P. A. & Sinskey, A. J. ( 2003; ). Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61, 61–68.[CrossRef]
    [Google Scholar]
  31. Gregg, K. & Sharpe, H. ( 1991; ). Enhancement of rumen microbial detoxification by gene transfer. In Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the Seventh International Symposium of Ruminant Physiology, pp. 719–735. San Diego: Academic Press.
  32. Gregg, K., Bauchop, T., Hudman, J. F., Vercoe, P. E., Ware, C. E., Woods, J. R. & Leng, R. A. ( 1987; ). Application of recombinant DNA methods to rumen bacteria. In Recent Advances in Animal Nutrition in Australia 1987, pp. 112–120. Edited by D. J. Farrell. Arimdale: University of New England.
  33. Gregg, K., Cooper, C. L., Schafer, D. J., Sharpe, H., Beard, C. E., Allen, G. & Xu, J. ( 1994; ). Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium. Biotechnology (N Y) 12, 1361–1365.[CrossRef]
    [Google Scholar]
  34. Gregg, K., Hamdorf, B., Henderson, K., Kopecny, J. & Wong, C. ( 1998; ). Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning. Appl Environ Microbiol 64, 3496–3498.
    [Google Scholar]
  35. Hefford, M. A., Kobayashi, Y., Allard, S. E., Forster, R. J. & Teather, R. M. ( 1997; ). Sequence analysis and characterization of pOM1, a small cryptic plasmid from Butyrivibrio fibrisolvens, and its use in construction of a new family of cloning vectors for butyrivibrios. Appl Environ Microbiol 63, 1701–1711.
    [Google Scholar]
  36. Helmann, J. D. ( 1995; ). Compilation and analysis of Bacillus subtilis σ A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23, 2351–2360.[CrossRef]
    [Google Scholar]
  37. Helmann, J. D. ( 1999; ). Anti-sigma factors. Curr Opin Microbiol 2, 135–141.[CrossRef]
    [Google Scholar]
  38. Henkin, T. M. ( 1996; ). Control of transcription termination in prokaryotes. Annu Rev Genet 30, 35–57.[CrossRef]
    [Google Scholar]
  39. Henkin, T. M. & Yanofsky, C. ( 2002; ). Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 24, 700–707.[CrossRef]
    [Google Scholar]
  40. Householder, T. C., Belli, W. A., Lissenden, S., Cole, J. A. & Clark, V. L. ( 1999; ). cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J Bacteriol 181, 541–551.
    [Google Scholar]
  41. Hsu, L. M., Vo, N. V. & Chamberlin, M. J. ( 1995; ). Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro. Proc Natl Acad Sci U S A 92, 11588–11592.[CrossRef]
    [Google Scholar]
  42. Ishihama, A. ( 2000; ). Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54, 499–518.[CrossRef]
    [Google Scholar]
  43. Kahala, M. & Palva, A. ( 1999; ). The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl Microbiol Biotechnol 51, 71–78.[CrossRef]
    [Google Scholar]
  44. Kalmokoff, M. L., Lu, D., Whitford, M. F. & Teather, R. M. ( 1999; ). Evidence for production of a new lantibiotic (butyrivibriocin OR79A) by the ruminal anaerobe Butyrivibrio fibrisolvens OR79: characterization of the structural gene encoding butyrivibriocin OR79A. Appl Environ Microbiol 65, 2128–2135.
    [Google Scholar]
  45. Kalmokoff, M. L., Allard, S., Austin, J. W., Whitford, M. F. & Hefford, M. A. ( 2000; ). Biochemical and genetic characterization of the flagellar filaments from the rumen anaerobe Butyrivibrio fibrisovlens OR77. Anaerobe 6, 93–109.[CrossRef]
    [Google Scholar]
  46. Keilty, S. & Rosenberg, M. ( 1987; ). Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem 262, 6389–6395.
    [Google Scholar]
  47. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  48. Klieve, A. V., Hudman, J. F. & Bauchop, T. ( 1989; ). Inducible bacteriophages from ruminal bacteria. Appl Environ Microbiol 55, 1630–1634.
    [Google Scholar]
  49. Kobayashi, Y., Forster, R. J. & Teather, R. M. ( 2000; ). Development of a competitive polymerase chain reaction assay for the ruminal bacterium Butyrivibrio fibrisolvens OB156 and its use for tracking an OB156-derived recombinant. FEMS Microbiol Lett 188, 185–190.[CrossRef]
    [Google Scholar]
  50. Kopecny, J., Logar, R. M. & Kobayashi, Y. ( 2001; ). Phenotypic and genetic data supporting reclassification of Butyrivibrio fibrisolvens isolates. Folia Microbiol (Praha) 46, 45–48.[CrossRef]
    [Google Scholar]
  51. Kopecny, J., Zorec, M., Mrazek, J., Kobayashi, Y. & Marinsek-Logar, R. ( 2003; ). Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol 53, 201–209.[CrossRef]
    [Google Scholar]
  52. Kwon, Y. M. & Ricke, S. C. ( 2000; ). Efficient amplification of multiple transposon-flanking sequences. J Microbiol Methods 41, 195–199.[CrossRef]
    [Google Scholar]
  53. Li, J. & Stewart, V. ( 1992; ). Localization of upstream sequence elements required for nitrate and anaerobic induction of fdn (formate dehydrogenase-N) operon expression in Escherichia coli K-12. J Bacteriol 174, 4935–4942.
    [Google Scholar]
  54. Lisser, S. & Margalit, H. ( 1993; ). Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res 21, 1507–1516.[CrossRef]
    [Google Scholar]
  55. Lloyd, G., Landini, P. & Busby, S. ( 2001; ). Activation and repression of transcription initiation in bacteria. Essays Biochem 37, 17–31.
    [Google Scholar]
  56. Mackie, R. I. & White, B. A. ( 1990; ). Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J Dairy Sci 73, 2971–2995.[CrossRef]
    [Google Scholar]
  57. Malakooti, J., Wang, S. P. & Ely, B. ( 1995; ). A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions. J Bacteriol 177, 4372–4376.
    [Google Scholar]
  58. McCracken, A., Turner, M. S., Giffard, P., Hafner, L. M. & Timms, P. ( 2000; ). Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol 173, 383–389.[CrossRef]
    [Google Scholar]
  59. Misener, S. & Krawetz, S. ( 2000; ). Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa: Humana Press.
  60. Niehus, E., Ye, F., Suerbaum, S. & Josenhans, C. ( 2002; ). Growth phase-dependent and differential transcriptional control of flagellar genes in Helicobacter pylori. Microbiology 148, 3827–3837.
    [Google Scholar]
  61. Patek, M., Nesvera, J., Guyonvarch, A., Reyes, O. & Leblon, G. ( 2003; ). Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311–323.[CrossRef]
    [Google Scholar]
  62. Petersen, L., Larsen, T. S., Ussery, D. W., On, S. L. & Krogh, A. ( 2003; ). rpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a −35 box. J Mol Biol 326, 1361–1372.[CrossRef]
    [Google Scholar]
  63. Prentki, P. & Krisch, H. M. ( 1984; ). In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313.[CrossRef]
    [Google Scholar]
  64. Reeve, W. G., Tiwari, R. P., Worsley, P. S., Dilworth, M. J., Glenn, A. R. & Howieson, J. G. ( 1999; ). Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 145, 1307–1316.[CrossRef]
    [Google Scholar]
  65. Reeve, W. G., Tiwari, R. P., Kale, N. B., Dilworth, M. J. & Glenn, A. R. ( 2002; ). ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 43, 981–991.[CrossRef]
    [Google Scholar]
  66. Rhodius, V. A. & Busby, S. J. ( 1998; ). Positive activation of gene expression. Curr Opin Microbiol 1, 152–159.[CrossRef]
    [Google Scholar]
  67. Rogers, G. E. ( 1990; ). Improvement of wool production through genetic engineering. Trends Biotechnol 8, 6–11.[CrossRef]
    [Google Scholar]
  68. Rojo, F. ( 2001; ). Mechanisms of transcriptional repression. Curr Opin Microbiol 4, 145–151.[CrossRef]
    [Google Scholar]
  69. Rosado, M. & Gage, D. J. ( 2003; ). Transcriptional control of a rRNA promoter of the nodulating symbiont Sinorhizobium meliloti. FEMS Microbiol Lett 226, 15–22.[CrossRef]
    [Google Scholar]
  70. Sabelnikov, A. G., Greenberg, B. & Lacks, S. A. ( 1995; ). An extended −10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J Mol Biol 250, 144–155.[CrossRef]
    [Google Scholar]
  71. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  72. Sanderson, A., Mitchell, J. E., Minchin, S. D. & Busby, S. J. ( 2003; ). Substitutions in the Escherichia coli RNA polymerase σ 70 factor that affect recognition of extended −10 elements at promoters. FEBS Lett 544, 199–205.[CrossRef]
    [Google Scholar]
  73. Schneider, D. A., Gaal, T. & Gourse, R. L. ( 2002; ). NTP-sensing by rRNA promoters in Escherichia coli is direct. Proc Natl Acad Sci U S A 99, 8602–8607.[CrossRef]
    [Google Scholar]
  74. Smith, C. J. & Hespell, R. B. ( 1983; ). Symposium: application of molecular genetics in ruminants. Prospects for development and use of recombinant DNA techniques with ruminal bacteria. J Dairy Sci 66, 1536–1546.[CrossRef]
    [Google Scholar]
  75. Tatusova, T. A. & Madden, T. L. ( 1999; ). blast 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174, 247–250.[CrossRef]
    [Google Scholar]
  76. Teather, R. M. ( 1985; ). Application of genetic manipulation to rumen microflora. Can J Anim Sci 65, 563–574.[CrossRef]
    [Google Scholar]
  77. Teather, R. M. & Forster, R. J. ( 1998; ). Manipulating the rumen microflora with bacteriocins to improve ruminant production. Can J Anim Sci 78, 57–69.[CrossRef]
    [Google Scholar]
  78. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  79. Vanet, A., Marsan, L., Labigne, A. & Sagot, M. F. ( 2000; ). Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori σ 80 family of promoter signals. J Mol Biol 297, 335–353.[CrossRef]
    [Google Scholar]
  80. Vogel, J., Axmann, I. M., Herzel, H. & Hess, W. R. ( 2003; ). Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Res 31, 2890–2899.[CrossRef]
    [Google Scholar]
  81. Voskuil, M. I. & Chambliss, G. H. ( 1998; ). The −16 region of Bacillus subtilis and other Gram-positive bacterial promoters. Nucleic Acids Res 26, 3584–3590.[CrossRef]
    [Google Scholar]
  82. Voskuil, M. I. & Chambliss, G. H. ( 2002; ). The TRTGn motif stabilizes the transcription initiation open complex. J Mol Biol 322, 521–532.[CrossRef]
    [Google Scholar]
  83. Weiner, J., III, Herrmann, R. & Browning, G. F. ( 2000; ). Transcription in Mycoplasma pneumoniae. Nucleic Acids Res 28, 4488–4496.[CrossRef]
    [Google Scholar]
  84. Woods, J. R., Hudman, J. F. & Gregg, K. ( 1989; ). Isolation of an endoglucanase gene from Bacteroides ruminicola subsp. brevis. J Gen Microbiol 135, 2543–2549.
    [Google Scholar]
  85. Wosten, M. M. ( 1998; ). Eubacterial sigma-factors. FEMS Microbiol Rev 22, 127–150.[CrossRef]
    [Google Scholar]
  86. Xu, H. & Hoover, T. R. ( 2001; ). Transcriptional regulation at a distance in bacteria. Curr Opin Microbiol 4, 138–144.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006502-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006502-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 3071 - 3080

Phylogenetic tree showing the relationships between the 16S rDNA sequence of strain 0/10 and closely related species. Strain OR38 is positioned similarly to strain OR35 (Agriculture and Agri-Food Canada). Accession numbers and strain designations are shown. [ PDF] (299 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error