1887

Abstract

is a zoonotic, Gram-negative coccobacillus that causes tularemia in humans and animals. subspecies (type A) and subspecies (type B) are antigenically similar and more virulent than in humans. The genetic locus that encodes the LPS O antigen was found to be substantially different between the type B live vaccine strain (LVS) and One LVS-specific gene with homology to a galactosyl transferase was selected for allelic replacement using a –chloramphenicol expression suicide plasmid, and recombinants were screened for colony morphology on Congo red agar that matched that of . Two mutants (WbtI and WbtI) were isolated that contained substitutions in conserved motifs in the sugar transamine/perosamine synthetase (WbtI) of the O-antigen locus, and the latter mutant was extensively tested and characterized. WbtI grew at the same rate as the parent strain in Chamberlain's defined medium, completely lacked O antigen, was serum-sensitive but could grow in a mouse macrophage cell line, had increased resistance to sodium deoxycholate, and was highly attenuated in mice. Complementation of WbtI with the wild-type gene restored normal LPS synthesis, phenotypic properties similar to the parent, and virulence in mice. Immunization with WbtI protected mice against a relatively low-dose intraperitoneal challenge with LVS, but was less protective against a high-dose challenge. These results indicate that complete loss of O antigen alters the surface phenotype and abrogates virulence in , but also compromises the induction of full protective immunity against infection in mice.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006460-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3141.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006460-0&mimeType=html&fmt=ahah

References

  1. Ahmed F., Inzana T. J. 2004; Subtractive Hybridization: a Tool to Identify Potential Virulence Factors in Francisella tularensis. p 64 Second Annual Mid-Atlantic Microbial Pathogenesis Meeting Wintergreen, VA:
    [Google Scholar]
  2. Baron G. S., Nano F. E. 1998; MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol 29:247–259
    [Google Scholar]
  3. Bates P. A., Sternberg M. J. 1999; Model building by comparison at CASP3: using expert knowledge and computer automation. ProteinsSuppl. 347–54
    [Google Scholar]
  4. Bernier S. P., Sokol P. A. 2005; Use of suppression-subtractive hybridization to identify genes in the Burkholderia cepacia complex that are unique to Burkholderia cenocepacia. J Bacteriol 187:5278–5291
    [Google Scholar]
  5. Chen W., Shen H., Webb A., Kuolee R., Conlan J. W. 2003; Tularemia in BALB/c and C57BL/6 mice vaccinated with Francisella tularensis LVS and challenged intradermally, or by aerosol with virulent isolates of the pathogen: protection varies depending on pathogen virulence, route of exposure, and host genetic background. Vaccine 21:3690–3700
    [Google Scholar]
  6. Chen W., Kuolee R., Shen H., Busa M., Conlan J. W. 2005; Toll-like receptor 4 (TLR4) plays a relatively minor role in murine defense against primary intradermal infection with Francisella tularensis LVS. Immunol Lett 97:151–154
    [Google Scholar]
  7. Ciucanu I., Kerek F. 1984; A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217
    [Google Scholar]
  8. Cole L. E., Elkins K. L., Michalek S. M., Qureshi N., Eaton L. J., Rallabhandi P., Cuesta N., Vogel S. N. 2006; Immunologic consequences of Francisella tularensis live vaccine strain infection: role of the innate immune response in infection and immunity. J Immunol 176:6888–6899
    [Google Scholar]
  9. Conlan J. W., Chen W., Shen H., Webb A., KuoLee R. 2003; Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb Pathog 34:239–248
    [Google Scholar]
  10. Conlan J. W., Shen H., Kuolee R., Zhao X., Chen W. 2005; Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an αβ T cell- and interferon gamma-dependent mechanism. Vaccine 23:2477–2485
    [Google Scholar]
  11. Cowley S. C., Elkins K. L. 2003; Multiple T cell subsets control Francisella tularensis LVS intracellular growth without stimulation through macrophage interferon γ receptors. J Exp Med 198:379–389
    [Google Scholar]
  12. Cowley S. C., Myltseva S. V., Nano F. E. 1996; Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol Microbiol 20:867–874
    [Google Scholar]
  13. Cowley S. C., Gray C. J., Nano F. E. 2000; Isolation and characterization of Francisella novicida mutants defective in lipopolysaccharide biosynthesis. FEMS Microbiol Lett 182:63–67
    [Google Scholar]
  14. Darling R. G., Catlett C. L., Huebner K. D., Jarrett D. G. 2002; Threats in bioterrorism. I: CDC category A agents. Emerg Med Clin North Am 20:273–309
    [Google Scholar]
  15. Dennis D. T., Inglesby T. V., Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., Fine A. D., Friedlander A. M., Hauer J. other authors 2001; Tularemia as a biological weapon: medical and public health management. JAMA J Am Med Assoc 285:2763–2773
    [Google Scholar]
  16. DeShazer D., Waag D. M., Fritz D. L., Woods D. E. 2001; Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb Pathog 30:253–269
    [Google Scholar]
  17. Ellis J., Oyston P. C., Green M., Titball R. W. 2002; Tularemia. Clin Microbiol Rev 15:631–646
    [Google Scholar]
  18. Fortier A. H., Slayter M. V., Ziemba R., Meltzer M. S., Nacy C. A. 1991; Live vaccine strain of Francisella tularensis: infection and immunity in mice. Infect Immun 59:2922–2928
    [Google Scholar]
  19. Golovliov I., Sjostedt A., Mokrievich A., Pavlov V. 2003; A method for allelic replacement in Francisella tularensis. FEMS Microbiol Lett 222:273–280
    [Google Scholar]
  20. Hajjar A. M., Harvey M. D., Shaffer S. A., Goodlett D. R., Sjöstedt A, Edebro H., Forsman M., Byström M., Pelletier M. other authors 2006; Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect Immun 74:6730–6738
    [Google Scholar]
  21. Harakava R., Gabriel D. W. 2003; Genetic differences between two strains of Xylella fastidiosa revealed by suppression subtractive hybridization. Appl Environ Microbiol 69:1315–1319
    [Google Scholar]
  22. Hartley G., Taylor R., Prior J., Newstead S., Hitchen P. G., Morris H. R., Dell A., Titball R. W. 2005; Grey variants of the live vaccine strain of Francisella tularensis lack lipopolysaccharide O-antigen, show reduced ability to survive in macrophages and do not induce protective immunity in mice. Vaccine 24:989–996
    [Google Scholar]
  23. Hopla C. F., Hopla A. K. 1994; Tularemia. In Handbook of Zoonoses pp 113–126 Edited by Beran G. W., Steele J. H. Boca Raton, FL: CRC Press;
    [Google Scholar]
  24. Inzana T. J. 1983; Electrophoretic heterogeneity and interstrain variation of the lipopolysaccharide of Haemophilus influenzae. J Infect Dis 148:492–499
    [Google Scholar]
  25. Inzana T. J., Anderson P. 1985; Serum factor-dependent resistance of Haemophilus influenzae type b to antibody to lipopolysaccharide. J Infect Dis 151:869–877
    [Google Scholar]
  26. Inzana T. J., Glindemann G. E., Snider G., Gardner S., Crofton L., Byrne B., Harper J. 2004; Characterization of a wild-type strain of Francisella tularensis isolated from a cat. J Vet Diagn Invest 16:374–381
    [Google Scholar]
  27. Joiner K. A. 1988; Complement evasion by bacteria and parasites. Annu Rev Microbiol 42:201–230
    [Google Scholar]
  28. Larsson P., Oyston P. C., Chain P., Chu M. C., Duffield M., Fuxelius H. H., Garcia E., Hälltorp G., Johansson D. other authors 2005; The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37:153–159
    [Google Scholar]
  29. Li J., Rosen B. P. 1998; Steric limitations in the interaction of the ATP binding domains of the ArsA ATPase. J Biol Chem 273:6796–6800
    [Google Scholar]
  30. Li J. W., Inoue Y., Miyazaki M., Pu H., Kondo A., Namba M. 2000; Growth inhibitory effects of ATP and its derivatives on human fibroblasts immortalized with 60Co-gamma rays. Int J Mol Med 5:59–62
    [Google Scholar]
  31. Li J., Waters S. B., Drobna Z., Devesa V., Styblo M., Thomas D. J. 2005; Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype. Toxicol Appl Pharmacol 204:164–169
    [Google Scholar]
  32. Liu L., Spilker T., Coenye T., LiPuma J. J. 2003; Identification by subtractive hybridization of a novel insertion element specific for two widespread Burkholderia cepacia genomovar III strains. J Clin Microbiol 41:2471–2476
    [Google Scholar]
  33. Maier T. M., Havig A., Casey M., Nano F. E., Frank D. W., Zahrt T. C. 2004; Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol 70:7511–7519
    [Google Scholar]
  34. Merkle R. K., Poppe I. 1994; Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol 230:1–15
    [Google Scholar]
  35. Newton H. J., Sansom F. M., Bennett-Wood V., Hartland E. L. 2006; Identification of Legionella pneumophila-specific genes by genomic subtractive hybridization with Legionella micdadei and identification of lpnE, a gene required for efficient host cell entry. Infect Immun 74:1683–1691
    [Google Scholar]
  36. Parsons Y. N., Banasko R., Detsika M. G., Duangsonk K., Rainbow L., Hart C. A., Winstanley C. 2003; Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes. Arch Microbiol 179:214–223
    [Google Scholar]
  37. Penn R. L. 2005; Francisella tularensis (tularemia). . In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases pp 2674–2685 Edited by Mandell G. L., Bennett J. E., Dolin R. Philadelphia, PA: Elsevier Churchill Livingstone;
    [Google Scholar]
  38. Phillips N. J., Schilling B., McLendon M. K., Apicella M. A., Gibson B. W. 2004; Novel modification of lipid A of Francisella tularensis. Infect Immun 72:5340–5348
    [Google Scholar]
  39. Prior J. L., Prior R. G., Hitchen P. G., Diaper H., Griffin K. F., Morris H. R., Dell A., Titball R. W. 2003; Characterization of the O antigen gene cluster and structural analysis of the O antigen of Francisella tularensissubsp. tularensis. J Med Microbiol 52:845–851
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  41. Sandström G., Löfgren S., Tärnvik A. 1988; A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect Immun 56:1194–1202
    [Google Scholar]
  42. Sayle R. A., Milner-White E. J. 1995; RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374
    [Google Scholar]
  43. Shen H., Chen W., Conlan J. W. 2004; Susceptibility of various mouse strains to systemically- or aerosol-initiated tularemia by virulent type A Francisella tularensis before and after immunization with the attenuated live vaccine strain of the pathogen. Vaccine 22:2116–2121
    [Google Scholar]
  44. Sjöstedt A. 2005; Family III. Francisellaceae, fam. nov.. In Bergey's Manual of Systematic Bacteriology, 2nd edn. pp 199–210 Edited by Garrity G., Brenner D. J., Kreig N. R., Staley J. T., Boone D. R., Vos P. De, Goodfellow M., Rainey F. A., Garrity G. M., Schleiffer K.-H. New York: Springer;
    [Google Scholar]
  45. Staples J. E., Kubota K. A., Chalcraft L. G., Mead P. S., Petersen J. M. 2006; Epidemiologic and molecular analysis of human tularemia, United States, 1964–2004. Emerg Infect Dis 12:1113–1118
    [Google Scholar]
  46. Sturiale L., Garozzo D., Silipo A., Lanzetta R., Parrilli M., Molinaro A. 2005; New conditions for matrix-assisted laser desorption/ionization mass spectrometry of native bacterial R-type lipopolysaccharides. Rapid Commun Mass Spectrom 19:1829–1834
    [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  48. Timoney J. F., Gillespie J. H., Scott F. W., Barlough J. E. 1988; The genus Francisella. In Hagan and Bruner's Microbiology and Infectious Diseases of Domestic Animals pp 132–135 Edited by Timoney J. F., Gillespie J. H., Scott F. W., Barlough J. E. Ithaca, NY: Cornell University Press;
    [Google Scholar]
  49. Titball R. W., Sjöstedt A. 2002; Francisella tularensis: an overview. ASM News 69:558–563
    [Google Scholar]
  50. Vinogradov E. V., Shashkov A. S., Knirel Y. A., Kochetkov N. K., Tochtamysheva N. V., Averin S. F., Goncharova O. V., Khlebnikov V. S. 1991; Structure of the O-antigen of Francisella tularensis strain 15. Carbohydr Res 214:289–297
    [Google Scholar]
  51. Vinogradov E. V., Bock K., Holst O., Brade H. 1995; The structure of the lipid A-core region of the lipopolysaccharides from Vibrio cholerae O1 smooth strain 569B (Inaba) and rough mutant strain 95R (Ogawa. Eur J Biochem 233:152–158
    [Google Scholar]
  52. Vinogradov E., Perry M. B., Conlan J. W. 2002; Structural analysis of Francisella tularensis lipopolysaccharide. Eur J Biochem 269:6112–6118
    [Google Scholar]
  53. Vinogradov E., Conlan W. J., Gunn J. S., Perry M. B. 2004; Characterization of the lipopolysaccharide O-antigen of Francisella novicida (U112. Carbohydr Res 339:649–654
    [Google Scholar]
  54. Ward C. K., Lawrence M. L., Veit H. P., Inzana T. J. 1998; Cloning and mutagenesis of a serotype-specific DNA region involved in encapsulation and virulence of Actinobacillus pleuropneumoniae serotype 5a: concomitant expression of serotype 5a and 1 capsular polysaccharides in recombinant A. pleuropneumoniae serotype 1. Infect Immun 66:3326–3336
    [Google Scholar]
  55. Winstanley C. 2002; Spot the difference: applications of subtractive hybridisation to the study of bacterial pathogens. J Med Microbiol 51:459–467
    [Google Scholar]
  56. York W. S., Darvill A. G., McNeil M., Stevenson T. T., Albersheim P. 1985; Isolation and characterization of plant cell walls and cell-wall components. Methods Enzymol 118:3–40
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006460-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006460-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error