1887

Abstract

is a fastidious bacterium associated with infections in humans and cats. The mechanisms involved in the long-term survival of bartonellae despite vigorous host immune responses are poorly understood. Generation of genetic variants is a possible strategy to circumvent the host specific immune responses. The authors have recently demonstrated the coexistence of different genetic variants within the progeny of three primary isolates from Berlin by PFGE analysis. Aims of the present study were to determine whether coexistence of different variants is a common feature of isolates worldwide and whether the genetic variants originally emerged . Thirty-four primary isolates from different geographical regions were analysed by subjecting multiple single-colony-derived cultures to PFGE analysis. Up to three genetic variants were detected within 20 (58.8 %) isolates, indicating that most primary isolates display a mosaic-like structure. The close relatedness of the genetic variants within an isolate was confirmed by multi-locus sequence typing. In contrast to the primary isolates, no genetic variants were detected within the progeny of 20 experimental clones generated from 20 primary isolates, suggesting that the variants were not induced during the procedure of PFGE analysis. Hence, the genetic variants within a primary isolate most likely originally emerged . Consideration of the mosaic structure of primary isolates is essential when interpreting typing studies on .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006379-0
2007-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2045.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006379-0&mimeType=html&fmt=ahah

References

  1. Abbott, R. C., Chomel, B. B., Kasten, R. W., Floyd-Hawkins, K. A., Kikuchi, Y., Koehler, J. E. & Pedersen, N. C. ( 1997; ). Experimental and natural infection with Bartonella henselae in domestic cats. Comp Immunol Microbiol Infect Dis 20, 41–51.[CrossRef]
    [Google Scholar]
  2. Alsmark, C. M., Frank, A. C., Karlberg, E. O., Legault, B. A., Ardell, D. H., Canback, B., Eriksson, A. S., Naslund, A. K., Handley, S. A. & other authors ( 2004; ). The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc Natl Acad Sci U S A 101, 9716–9721.[CrossRef]
    [Google Scholar]
  3. Anderson, B. E. & Neuman, M. A. ( 1997; ). Bartonella spp. as emerging human pathogens. Clin Microbiol Rev 10, 203–219.
    [Google Scholar]
  4. Arvand, M. & Viezens, J. ( 2007; ). Evaluation of pulsed-field gel electrophoresis and multi-locus sequence typing for the analysis of clonal relatedness among Bartonella henselae isolates. Int J Med Microbiol in press
    [Google Scholar]
  5. Arvand, M., Mielke, M. E., Sterry, K. & Hahn, H. ( 1998a; ). Detection of specific cellular immune response to Bartonella henselae in a patient with cat scratch disease. Clin Infect Dis 27, 1533–1534.[CrossRef]
    [Google Scholar]
  6. Arvand, M., Wendt, C., Regnath, T., Ullrich, R. & Hahn, H. ( 1998b; ). Characterization of Bartonella henselae isolated from bacillary angiomatosis lesions in a human immunodeficiency virus-infected patient in Germany. Clin Infect Dis 26, 1296–1299.[CrossRef]
    [Google Scholar]
  7. Arvand, M., Ignatius, R., Regnath, T., Hahn, H. & Mielke, M. E. ( 2001a; ). Bartonella henselae-specific cell-mediated immune responses display a predominantly Th1 phenotype in experimentally infected C57BL/6 mice. Infect Immun 69, 6427–6433.[CrossRef]
    [Google Scholar]
  8. Arvand, M., Klose, A. J., Schwartz-Porsche, D., Hahn, H. & Wendt, C. ( 2001b; ). Genetic variability and prevalence of Bartonella henselae in cats in Berlin, Germany, and analysis of its genetic relatedness to a strain from Berlin that is pathogenic for humans. J Clin Microbiol 39, 743–746.[CrossRef]
    [Google Scholar]
  9. Arvand, M., Schubert, H. & Viezens, J. ( 2006; ). Emergence of distinct genetic variants in the population of primary Bartonella henselae isolates. Microbes Infect 8, 1315–1320.[CrossRef]
    [Google Scholar]
  10. Birtles, R. J., Laycock, G., Kenny, M. J., Shaw, S. E. & Day, M. J. ( 2002; ). Prevalence of Bartonella species causing bacteraemia in domesticated and companion animals in the United Kingdom. Vet Rec 151, 225–229.[CrossRef]
    [Google Scholar]
  11. Brayton, K. A., Kappmeyer, L. S., Herndon, D. R., Dark, M. J., Tibbals, D. L., Palmer, G. H., McGuire, T. C. & Knowles, D. P., Jr ( 2005; ). Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc Natl Acad Sci U S A 102, 844–849.[CrossRef]
    [Google Scholar]
  12. Breitschwerdt, E. B. & Kordick, D. L. ( 2000; ). Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev 13, 428–438.[CrossRef]
    [Google Scholar]
  13. Cerdeno-Tarraga, A. M., Patrick, S., Crossman, L. C., Blakely, G., Abratt, V., Lennard, N., Poxton, I., Duerden, B., Harris, B. & other authors ( 2005; ). Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307, 1463–1465.[CrossRef]
    [Google Scholar]
  14. Chenoweth, M. R., Greene, C. E., Krause, D. C. & Gherardini, F. C. ( 2004; ). Predominant outer membrane antigens of Bartonella henselae. Infect Immun 72, 3097–3105.[CrossRef]
    [Google Scholar]
  15. Dehio, C. ( 2001; ). Bartonella interactions with endothelial cells and erythrocytes. Trends Microbiol 9, 279–285.[CrossRef]
    [Google Scholar]
  16. Dubois, M. E., Demick, K. P. & Mansfield, J. M. ( 2005; ). Trypanosomes expressing a mosaic variant surface glycoprotein coat escape early detection by the immune system. Infect Immun 73, 2690–2697.[CrossRef]
    [Google Scholar]
  17. Fabbi, M., De Giuli, L., Tranquillo, M., Bragoni, R., Casiraghi, M. & Genchi, C. ( 2004; ). Prevalence of Bartonella henselae in Italian stray cats: evaluation of serology to assess the risk of transmission of Bartonella to humans. J Clin Microbiol 42, 264–268.[CrossRef]
    [Google Scholar]
  18. Guptill, L., Slater, L., Wu, C. C., Glickman, L. T., Lin, T. L., Welch, D. F., Crippen, J. T. & HogenEsch, H. ( 1999; ). Immune response of neonatal specific pathogen-free cats to experimental infection with Bartonella henselae. Vet Immunol Immunopathol 71, 233–243.[CrossRef]
    [Google Scholar]
  19. Guptill, L., Wu, C. C., HogenEsch, H., Slater, L. N., Glickman, N., Dunham, A., Syme, H. & Glickman, L. ( 2004; ). Prevalence, risk factors, and genetic diversity of Bartonella henselae infections in pet cats in four regions of the United States. J Clin Microbiol 42, 652–659.[CrossRef]
    [Google Scholar]
  20. Iredell, J., Blanckenberg, D., Arvand, M., Grauling, S., Feil, E. J. & Birtles, R. J. ( 2003; ). Characterization of the natural population of Bartonella henselae by multilocus sequence typing. J Clin Microbiol 41, 5071–5079.[CrossRef]
    [Google Scholar]
  21. Jacobs, R. F. & Schutze, G. E. ( 1998; ). Bartonella henselae as a cause of prolonged fever and fever of unknown origin in children. Clin Infect Dis 26, 80–84.[CrossRef]
    [Google Scholar]
  22. Kabeya, H., Maruyama, S., Irei, M., Takahashi, R., Yamashita, M. & Mikami, T. ( 2002; ). Genomic variations among Bartonella henselae isolates derived from naturally infected cats. Vet Microbiol 89, 211–221.[CrossRef]
    [Google Scholar]
  23. Kraft, C., Stack, A., Josenhans, C., Niehus, E., Dietrich, G., Correa, P., Fox, J. G., Falush, D. & Suerbaum, S. ( 2006; ). Genomic changes during chronic Helicobacter pylori infection. J Bacteriol 188, 249–254.[CrossRef]
    [Google Scholar]
  24. Kyme, P., Dillon, B. & Iredell, J. ( 2003; ). Phase variation in Bartonella henselae. Microbiology 149, 621–629.[CrossRef]
    [Google Scholar]
  25. Lindroos, H., Vinnere, O., Mira, A., Repsilber, D., Naslund, K. & Andersson, S. G. ( 2006; ). Genome rearrangements, deletions, and amplifications in the natural population of Bartonella henselae. J Bacteriol 188, 7426–7439.[CrossRef]
    [Google Scholar]
  26. Mandle, T., Einsele, H., Schaller, M., Neumann, D., Vogel, W., Autenrieth, I. B. & Kempf, V. A. ( 2005; ). Infection of human CD34+ progenitor cells with Bartonella henselae results in intraerythrocytic presence of B. henselae. Blood 106, 1215–1222.[CrossRef]
    [Google Scholar]
  27. Maruyama, S., Izumikawa, K., Miyashita, M., Kabeya, H., Mikami, T., Yamanouchi, H., Sasaki, E. & Yoshida, H. ( 2004; ). First isolation of Bartonella henselae type I from a cat-scratch disease patient in Japan and its molecular analysis. Microbiol Immunol 48, 103–109.[CrossRef]
    [Google Scholar]
  28. Raoult, D., Fournier, P. E., Drancourt, M., Marrie, T. J., Etienne, J., Cosserat, J., Cacoub, P., Poinsignon, Y., Leclercq, P. & Sefton, A. M. ( 1996; ). Diagnosis of 22 new cases of Bartonella endocarditis. Ann Intern Med 125, 646–652.[CrossRef]
    [Google Scholar]
  29. Regnath, T., Mielke, M. E., Arvand, M. & Hahn, H. ( 1998; ). Murine model of Bartonella henselae infection in the immunocompetent host. Infect Immun 66, 5534–5536.
    [Google Scholar]
  30. Riess, T., Raddatz, G., Linke, D., Schafer, A. & Kempf, V. A. ( 2007; ). Analysis of Bartonella adhesin A expression reveals differences between various B. henselae strains. Infect Immun 75, 35–43.[CrossRef]
    [Google Scholar]
  31. Sander, A., Ruess, M., Bereswill, S., Schuppler, M. & Steinbrueckner, B. ( 1998; ). Comparison of different DNA fingerprinting techniques for molecular typing of Bartonella henselae isolates. J Clin Microbiol 36, 2973–2981.
    [Google Scholar]
  32. Schulein, R., Seubert, A., Gille, C., Lanz, C., Hansmann, Y., Piemont, Y. & Dehio, C. ( 2001; ). Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J Exp Med 193, 1077–1086.[CrossRef]
    [Google Scholar]
  33. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006379-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006379-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error