1887

Abstract

Ubiquinones (UQs) and menaquinones (MKs) perform distinct functions in . Whereas, in general, UQs are primarily involved in aerobic respiration, the MKs serve as electron carriers in anaerobic respiration. Both UQs and MKs can accept electrons from various dehydrogenases, and may donate electrons to different oxidases. Hence, they play a role in maintaining metabolic flexibility in whenever this organism has to adapt to conditions with changing redox characteristics, such as oxygen availability. Here, the authors report on the changes in both the size and the redox state of the quinone pool when the environment changes from being well aerated to one with low oxygen availability. It is shown that such transitions are accompanied by a rapid increase in the demethylmenaquinone pool, and a slow increase in the MK pool. Moreover, in exponentially growing cultures in a well-shaken Erlenmeyer flask, it is observed that the assumption of a pseudo-steady state does not hold with respect to the redox state of the quinone pool.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006098-0
2007-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1974.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006098-0&mimeType=html&fmt=ahah

References

  1. Alexeeva S., Sawers G., Hellingwerf K. J., de Kort B., Teixeira de Mattos M. J. 2000; Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol 182:4934–4940 [CrossRef]
    [Google Scholar]
  2. Alexeeva S., Hellingwerf K. J., Teixeira de Mattos M. J. 2002; Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia col i. J Bacteriol 184:1402–1406 [CrossRef]
    [Google Scholar]
  3. Berg B. L., Stewart V. 1990; Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12. Genetics 125:691–702
    [Google Scholar]
  4. Brondijk T. H., Fiegen D., Richardson D. J., Cole J. A. 2002; Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol Microbiol 44:245–255 [CrossRef]
    [Google Scholar]
  5. Calhoun M. W., Gennis R. B. 1993; Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli. J Bacteriol 175:3013–3019
    [Google Scholar]
  6. Calhoun M. W., Newton G., Gennis R. B. 1991; E. coli map. Physical map locations of genes encoding components of the aerobic respiratory chain of Escherichia coli. J Bacteriol 173:1569–1570
    [Google Scholar]
  7. Calhoun M. W., Oden K. L., Gennis R. B., Neijssel O. M., de Mattos M. J. 1993; Energetic efficiency of Escherichia coli : effects of mutations in components of the aerobic respiratory chain. J Bacteriol 175:3020–3025
    [Google Scholar]
  8. Cole J. 1996; Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation?. FEMS Microbiol Lett 136:1–11 [CrossRef]
    [Google Scholar]
  9. Constantinidou C., Hobman J. L., Griffiths L., Patel M. D., Penn C. W., Cole J. A., Overton T. W. 2006; A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281:4802–4815 [CrossRef]
    [Google Scholar]
  10. de Graef M. R., Alexeeva S., Snoep J. L., Teixeira de Mattos M. J. 1999; The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357
    [Google Scholar]
  11. Evans C. G. T., Herbert D., Tempest D. W. 1970; The continuous culture of microorganisms. 2. Construction of a chemostat. In Methods in Microbiology vol. 2 pp 277–327 Edited by Norris J. R., Ribbons D. W. London: Academic Press;
    [Google Scholar]
  12. Geyer R., Peacock A. D., White D. C., Lytle C., Van Berkel G. J. 2004; Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrometric analysis of microbial respiratory ubiquinones and menaquinones. J Mass Spectrom 39:922–929 [CrossRef]
    [Google Scholar]
  13. Hommes R. W., Simons J. A., Snoep J. L., Postma P. W., Tempest D. W., Neijssel O. M. 1991; Quantitative aspects of glucose metabolism by Escherichia coli B/r, grown in the presence of pyrroloquinoline quinone. Antonie Van Leeuwenhoek 60:373–382 [CrossRef]
    [Google Scholar]
  14. Lange H. C., Eman M., Visser D., Frank J., Heijnen J. J., van Zuijlen G., van Dam J. C., Teixeira de Mattos M. J. 2001; Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415 [CrossRef]
    [Google Scholar]
  15. Lee P. T., Hsu A. Y., Ha H. T., Clarke C. F. 1997; A C -methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. J Bacteriol 179:1748–1754
    [Google Scholar]
  16. Neijssel O. M., Teixeira de Mattos M. J. 1994; The energetics of bacterial growth: a reassessment. Mol Microbiol 13:172–182
    [Google Scholar]
  17. Otten M. F. 2001 Structure, function, and regulation of the respiratory network of Paracoccus denitrificans PhD thesis Vrije Universiteit Amsterdam; The Netherlands:
    [Google Scholar]
  18. Poole R. K., Cook G. M. 2000; Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43:165–224
    [Google Scholar]
  19. Shestopalov A. I., Bogachev A. V., Murtazina R. A., Viryasov M. B., Skulachev V. P. 1997; Aeration-dependent changes in composition of the quinone pool in Escherichia coli . Evidence of post-transcriptional regulation of the quinone biosynthesis. FEBS Lett 404:272–274 [CrossRef]
    [Google Scholar]
  20. Smith M. W., Neidhardt F. C. 1983; Proteins induced by aerobiosis in Escherichia coli. J Bacteriol 154:344–350
    [Google Scholar]
  21. Soballe B., Poole R. K. 1999; Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology 145:1817–1830 [CrossRef]
    [Google Scholar]
  22. Teixeira de Mattos M. J., Neijssel O. M. 1997; Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol 59:117–126 [CrossRef]
    [Google Scholar]
  23. Unden G. 1988; Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr -independent expression. Arch Microbiol 150:499–503 [CrossRef]
    [Google Scholar]
  24. Van den Bergen C. W., Wagner A. M., Krab K., Moore A. L. 1994; The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways. Eur J Biochem 226:1071–1078 [CrossRef]
    [Google Scholar]
  25. Wallace B. J., Young I. G. 1977; Role of quinones in electron transport to oxygen and nitrate in Escherichia coli . Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta 461:84–100 [CrossRef]
    [Google Scholar]
  26. Wissenbach U., Ternes D., Unden G. 1992; An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N -oxide and nitrate respiration. Arch Microbiol 158:68–73 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006098-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006098-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error