1887

Abstract

Two genes from the halotolerant yeast were cloned, and . These genes encode K transporters with sequence similarities to the TRK and HAK transporters from and . The DhHAK1p transporter was only expressed in K-starved cells, as shown by Northern blot analysis. Both DhTRK1p and DhHAK1p were expressed in a Δ Δ mutant of , unable to grow at low K. This expression resulted in partial recovery of growth and ability to retain K at low concentrations. In liquid media, 0.5 M NaCl affected growth of these transformants as it does in , resulting in a much less deleterious effect than in wild-type . Kinetics of Rb uptake in the transformants suggest that DhTRK1p and DhHAK1p code for moderate-affinity K transporters exhibiting a sigmoid response against Rb concentration and presenting a deviation from classic Michaelis–Menten kinetics at low substrate concentrations. Rb uptake by the DhTRK1p transporter was stimulated by millimolar concentrations of Na at pH 4.5. The good performance of DhTRK1p in the presence of NaCl may be a key feature in the halotolerance of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006080-0
2007-09-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3034.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006080-0&mimeType=html&fmt=ahah

References

  1. Aggarwal M., Bansal P. K., Mondal A. K.. 2005; Molecular cloning and biochemical characterization of a 3′(2′),5′-bisphosphate nucleotidase from Debaryomyces hansenii. Yeast22:457–470
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Banuelos M. A., Klein R. D., Alexander-Bowman S. J., Rodriguez-Navarro A.. 1995; A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J14:3021–3027
    [Google Scholar]
  4. Banuelos M. A., Madrid R., Rodriguez-Navarro A.. 2000; Individual functions of the HAK and TRK potassium transporters of Schwanniomyces occidentalis. Mol Microbiol37:671–679
    [Google Scholar]
  5. Bañuelos M. A, Ruiz M. C., Jimenez A., Souciet J.-L., Potier S., Ramos J.. 2002; Role of the Nha1 antiporter in regulating K+ influx in Saccharomyces cerevisiae. Yeast19:9–15
    [Google Scholar]
  6. Belinchon M. M., Flores C. L., Gancedo J. M.. 2004; Sampling Saccharomyces cerevisiae cells by rapid filtration improves the yield of mRNAs. FEMS Yeast Res4:751–756
    [Google Scholar]
  7. Benito B., Garciadeblas B., Schreier P., Rodriguez-Navarro A.. 2004; Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell3:359–368
    [Google Scholar]
  8. Birnboim H. C., Doly J.. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1523
    [Google Scholar]
  9. Bonetti B., Fu L., Moon J., Bedwell D. M.. 1995; The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol251:334–345
    [Google Scholar]
  10. Borst-Pauwels G. W. F. H.. 1981; Ion transport in yeast. Biochim Biophys Acta650:88–127
    [Google Scholar]
  11. Butinar L., Santos S., Spencer-Martins I., Oren A., Gunde-Cimerman N.. 2005; Yeast diversity in hypersaline habitats. FEMS Microbiol Lett244:229–234
    [Google Scholar]
  12. Cocolin L., Urso R., Rantsiou K., Cantoni C., Comi G.. 2006; Dynamics and characterization of yeasts during natural fermentation of Italian sausages. FEMS Yeast Res6:692–701
    [Google Scholar]
  13. Cryer D. R., Ecclesmall R., Marmur J.. 1975; Isolation of yeast DNA. In Methods in Cell Biologyvol. 12 pp39–44 Edited by Prescott D. M.. New York: Academic Press;
  14. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., de Montigny J., Marck C., Neuveglise C.. other authors 2004; Genome evolution in yeasts. Nature430:35–44
    [Google Scholar]
  15. Durell S. R., Guy H. R.. 1999; Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys J77:789–807
    [Google Scholar]
  16. Durell S. R., Hao Y., Nakamura T., Bakker E. P., Guy H. R.. 1999; Evolutionary relationship between K+ channels and symporters. Biophys J77:775–788
    [Google Scholar]
  17. Gaber R. F., Styles C. A., Fink G. R.. 1988; TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol8:2848–2859
    [Google Scholar]
  18. Garciadeblas B., Senn M. E., Banuelos M. A., Rodriguez-Navarro A.. 2003; Sodium transport and HKT transporters: the rice model. Plant J34:788–801
    [Google Scholar]
  19. Geitz R. D., Schiestl R. H.. 1995; Transforming yeast with DNA. Methods Mol Cell Biol5:255–269
    [Google Scholar]
  20. Gomez M. J., Luyten K., Ramos J.. 1996; The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett135:157–160
    [Google Scholar]
  21. Gonzalez-Hernandez J. C., Cardenas-Monroy C. A., Pena A.. 2004; Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast21:403–412
    [Google Scholar]
  22. Hanahan D.. 1985; Techniques for transformation of Escherichia coli. In DNA Cloning: a Practical Approach pp109–135 Edited by Glover D. M. Oxford: IRL Press;
  23. Haro R., Rodriguez-Navarro A.. 2002; Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1564;114–122
    [Google Scholar]
  24. Haro R., Rodriguez-Navarro A.. 2003; Functional analysis of the M2D helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1613;1–6
    [Google Scholar]
  25. Haro R., Sainz L., Rubio F., Rodriguez-Navarro A.. 1999; Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol31:511–520
    [Google Scholar]
  26. Hill J. E., Myers A. M., Koerner T. J., Tzagoloff A.. 1986; Yeast/ E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167
    [Google Scholar]
  27. Hoffman C. S., Winston F.. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene57:267–272
    [Google Scholar]
  28. Kim D., Raymond G. J., Clark S. D., Vranka J. A., Johnson J. D.. 1990; Yeast tRNATrp genes with anticodons corresponding to UAA and UGA nonsense codons. Nucleic Acids Res18:4215–4221
    [Google Scholar]
  29. Ko C. H., Gaber R. F.. 1991; TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol11:4266–4273
    [Google Scholar]
  30. Lages F., Silva-Graça M., Lucas C.. 1999; Glycerol active transport is a mechanism underlying halotolerance in yeasts: study of 42 species. Microbiology145:2577–2586
    [Google Scholar]
  31. Larsson C., Morales C., Gustafsson L., Adler L.. 1990; Osmoregulation of salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J Bacteriol172:1769–1774
    [Google Scholar]
  32. Madrid R., Gomez M. J., Ramos J., Rodriguez-Navarro A.. 1998; Ectopic potassium uptake in trk1trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem273:14838–14844
    [Google Scholar]
  33. Martinez-Cordero M. A., Martinez V., Rubio F.. 2004; Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol56:413–421
    [Google Scholar]
  34. Mortensen H. D., Gori K., Siegumfeldt H., Nissen P., Jespersen L., Arneborg N.. 2006; Intracellular pH homeostasis plays a role in the NaCl tolerance of Debaryomyces hansenii strains. Appl Microbiol Biotechnol71:713–719
    [Google Scholar]
  35. Mounier J., Gelsomino R., Goerges S., Vancanneyt M., Vandemeulebroecke K., Hoste B., Brennan N. M., Scherer S., Swings J.. 2005; Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol71:6489–6500
    [Google Scholar]
  36. Norkrans B.. 1966; Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Microbiol54:374–392
    [Google Scholar]
  37. Norkrans B., Kylin A.. 1969; Regulation of the potassium to sodium ratio and of the osmotic potential in relation to salt tolerance in yeasts. J Bacteriol100:836–845
    [Google Scholar]
  38. Page R. D. M.. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  39. Prista C., Almagro A., Loureiro-Dias M. C., Ramos J.. 1997; Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol63:4005–4009
    [Google Scholar]
  40. Prista C., Almagro A., Loureiro-Dias M. C., Ramos J.. 1998; Kinetics of cation movements in Debaryomyces hansenii. Folia Microbiol (Praha43:212–214
    [Google Scholar]
  41. Prista C., Soeiro A., Vesely P., Almagro A., Ramos J., Loureiro-Dias M. C.. 2002; Genes from Debaryomyces hansenii increase salt tolerance in Saccharomyces cerevisiae W303. FEMS Yeast Res2:151–157
    [Google Scholar]
  42. Prista C., Loureiro-Dias M. C., Montiel V., Garcia R., Ramos J.. 2005; Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res5:693–701
    [Google Scholar]
  43. Pronk J. T.. 2002; Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol68:2095–2100
    [Google Scholar]
  44. Ramos J., Rodriguez-Navarro A.. 1986; Regulation of the potassium transport systems of Saccharomyces cerevisiae as revealed by rubidium transport. Eur J Biochem154:307–311
    [Google Scholar]
  45. Ramos J., Haro R., Rodriguez-Navarro A.. 1990; Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochim Biophys Acta1029:211–217
    [Google Scholar]
  46. Ramos J., Alijo R., Haro R., Rodriguez-Navarro A.. 1994; TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. J Bacteriol176:249–252
    [Google Scholar]
  47. Rodriguez-Navarro A.. 2000; Potassium transport in fungi and plants. Biochim Biophys Acta 1469;1–30
    [Google Scholar]
  48. Rodriguez-Navarro A., Ramos J.. 1984; Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol159:940–945
    [Google Scholar]
  49. Rodriguez-Navarro A., Rubio F.. 2006; High-affinity potassium and sodium transport systems in plants. J Exp Bot57:1149–1160
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  51. Santa-Maria G. E., Rubio F., Dubcovsky J., Rodriguez-Navarro A.. 1997; The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell9:2281–2289
    [Google Scholar]
  52. Santos M. A., Keith G., Tuite M. F.. 1993; Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3′ (leucine) anticodon. EMBO J12:607–616
    [Google Scholar]
  53. Schmitt M. E., Brown T. A., Trumpower B. L.. 1990; A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res18:3091–3092
    [Google Scholar]
  54. Senn M. E., Rubio F., Banuelos M. A., Rodriguez-Navarro A.. 2001; Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem276:44563–44569
    [Google Scholar]
  55. Serrano R.. 1996; Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol165:1–52
    [Google Scholar]
  56. Surguchov A. P.. 1988; ‘Omnipotent' nonsense suppressors: new clues to an old puzzle. Trends Biochem Sci13:120–123
    [Google Scholar]
  57. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  58. Walker D. J., Black C. R., Miller A. J.. 1998; The role of cytosolic potassium and pH in the growth of barley roots. Plant Physiol118:957–964
    [Google Scholar]
  59. Wallis J. W., Chrebet G., Brodsky M., Rolfe M., Rothstein R.. 1989; A hyper-recombination mutation in Saccharomyces cerevisiae identifies a novel eukaryotic topoisomerase. Cell58:409–419
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006080-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006080-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error