1887

Abstract

Two genes from the halotolerant yeast were cloned, and . These genes encode K transporters with sequence similarities to the TRK and HAK transporters from and . The DhHAK1p transporter was only expressed in K-starved cells, as shown by Northern blot analysis. Both DhTRK1p and DhHAK1p were expressed in a Δ Δ mutant of , unable to grow at low K. This expression resulted in partial recovery of growth and ability to retain K at low concentrations. In liquid media, 0.5 M NaCl affected growth of these transformants as it does in , resulting in a much less deleterious effect than in wild-type . Kinetics of Rb uptake in the transformants suggest that DhTRK1p and DhHAK1p code for moderate-affinity K transporters exhibiting a sigmoid response against Rb concentration and presenting a deviation from classic Michaelis–Menten kinetics at low substrate concentrations. Rb uptake by the DhTRK1p transporter was stimulated by millimolar concentrations of Na at pH 4.5. The good performance of DhTRK1p in the presence of NaCl may be a key feature in the halotolerance of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006080-0
2007-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3034.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006080-0&mimeType=html&fmt=ahah

References

  1. Aggarwal, M., Bansal, P. K. & Mondal, A. K. ( 2005; ). Molecular cloning and biochemical characterization of a 3′(2′),5′-bisphosphate nucleotidase from Debaryomyces hansenii. Yeast 22, 457–470.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Banuelos, M. A., Klein, R. D., Alexander-Bowman, S. J. & Rodriguez-Navarro, A. ( 1995; ). A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J 14, 3021–3027.
    [Google Scholar]
  4. Banuelos, M. A., Madrid, R. & Rodriguez-Navarro, A. ( 2000; ). Individual functions of the HAK and TRK potassium transporters of Schwanniomyces occidentalis. Mol Microbiol 37, 671–679.
    [Google Scholar]
  5. Bañuelos, M. A., Ruiz, M. C., Jimenez, A., Souciet, J.-L., Potier, S. & Ramos, J. ( 2002; ). Role of the Nha1 antiporter in regulating K+ influx in Saccharomyces cerevisiae. Yeast 19, 9–15.[CrossRef]
    [Google Scholar]
  6. Belinchon, M. M., Flores, C. L. & Gancedo, J. M. ( 2004; ). Sampling Saccharomyces cerevisiae cells by rapid filtration improves the yield of mRNAs. FEMS Yeast Res 4, 751–756.[CrossRef]
    [Google Scholar]
  7. Benito, B., Garciadeblas, B., Schreier, P. & Rodriguez-Navarro, A. ( 2004; ). Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3, 359–368.[CrossRef]
    [Google Scholar]
  8. Birnboim, H. C. & Doly, J. ( 1979; ). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513–1523.[CrossRef]
    [Google Scholar]
  9. Bonetti, B., Fu, L., Moon, J. & Bedwell, D. M. ( 1995; ). The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251, 334–345.[CrossRef]
    [Google Scholar]
  10. Borst-Pauwels, G. W. F. H. ( 1981; ). Ion transport in yeast. Biochim Biophys Acta 650, 88–127.[CrossRef]
    [Google Scholar]
  11. Butinar, L., Santos, S., Spencer-Martins, I., Oren, A. & Gunde-Cimerman, N. ( 2005; ). Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244, 229–234.[CrossRef]
    [Google Scholar]
  12. Cocolin, L., Urso, R., Rantsiou, K., Cantoni, C. & Comi, G. ( 2006; ). Dynamics and characterization of yeasts during natural fermentation of Italian sausages. FEMS Yeast Res 6, 692–701.[CrossRef]
    [Google Scholar]
  13. Cryer, D. R., Ecclesmall, R. & Marmur, J. ( 1975; ). Isolation of yeast DNA. In Methods in Cell Biology, vol. 12, pp. 39–44. Edited by D. M. Prescott. New York: Academic Press.
  14. Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., de Montigny, J., Marck, C., Neuveglise, C. & other authors ( 2004; ). Genome evolution in yeasts. Nature 430, 35–44.[CrossRef]
    [Google Scholar]
  15. Durell, S. R. & Guy, H. R. ( 1999; ). Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys J 77, 789–807.[CrossRef]
    [Google Scholar]
  16. Durell, S. R., Hao, Y., Nakamura, T., Bakker, E. P. & Guy, H. R. ( 1999; ). Evolutionary relationship between K+ channels and symporters. Biophys J 77, 775–788.[CrossRef]
    [Google Scholar]
  17. Gaber, R. F., Styles, C. A. & Fink, G. R. ( 1988; ). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8, 2848–2859.
    [Google Scholar]
  18. Garciadeblas, B., Senn, M. E., Banuelos, M. A. & Rodriguez-Navarro, A. ( 2003; ). Sodium transport and HKT transporters: the rice model. Plant J 34, 788–801.[CrossRef]
    [Google Scholar]
  19. Geitz, R. D. & Schiestl, R. H. ( 1995; ). Transforming yeast with DNA. Methods Mol Cell Biol 5, 255–269.
    [Google Scholar]
  20. Gomez, M. J., Luyten, K. & Ramos, J. ( 1996; ). The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 135, 157–160.[CrossRef]
    [Google Scholar]
  21. Gonzalez-Hernandez, J. C., Cardenas-Monroy, C. A. & Pena, A. ( 2004; ). Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast 21, 403–412.[CrossRef]
    [Google Scholar]
  22. Hanahan, D. ( 1985; ). Techniques for transformation of Escherichia coli. In DNA Cloning: a Practical Approach, pp. 109–135. Edited by D. M. Glover. Oxford: IRL Press
  23. Haro, R. & Rodriguez-Navarro, A. ( 2002; ). Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1564, 114–122.[CrossRef]
    [Google Scholar]
  24. Haro, R. & Rodriguez-Navarro, A. ( 2003; ). Functional analysis of the M2D helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1613, 1–6.[CrossRef]
    [Google Scholar]
  25. Haro, R., Sainz, L., Rubio, F. & Rodriguez-Navarro, A. ( 1999; ). Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31, 511–520.[CrossRef]
    [Google Scholar]
  26. Hill, J. E., Myers, A. M., Koerner, T. J. & Tzagoloff, A. ( 1986; ). Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2, 163–167.[CrossRef]
    [Google Scholar]
  27. Hoffman, C. S. & Winston, F. ( 1987; ). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.[CrossRef]
    [Google Scholar]
  28. Kim, D., Raymond, G. J., Clark, S. D., Vranka, J. A. & Johnson, J. D. ( 1990; ). Yeast tRNATrp genes with anticodons corresponding to UAA and UGA nonsense codons. Nucleic Acids Res 18, 4215–4221.[CrossRef]
    [Google Scholar]
  29. Ko, C. H. & Gaber, R. F. ( 1991; ). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11, 4266–4273.
    [Google Scholar]
  30. Lages, F., Silva-Graça, M. & Lucas, C. ( 1999; ). Glycerol active transport is a mechanism underlying halotolerance in yeasts: study of 42 species. Microbiology 145, 2577–2586.
    [Google Scholar]
  31. Larsson, C., Morales, C., Gustafsson, L. & Adler, L. ( 1990; ). Osmoregulation of salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J Bacteriol 172, 1769–1774.
    [Google Scholar]
  32. Madrid, R., Gomez, M. J., Ramos, J. & Rodriguez-Navarro, A. ( 1998; ). Ectopic potassium uptake in trk1trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 273, 14838–14844.[CrossRef]
    [Google Scholar]
  33. Martinez-Cordero, M. A., Martinez, V. & Rubio, F. ( 2004; ). Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56, 413–421.[CrossRef]
    [Google Scholar]
  34. Mortensen, H. D., Gori, K., Siegumfeldt, H., Nissen, P., Jespersen, L. & Arneborg, N. ( 2006; ). Intracellular pH homeostasis plays a role in the NaCl tolerance of Debaryomyces hansenii strains. Appl Microbiol Biotechnol 71, 713–719.[CrossRef]
    [Google Scholar]
  35. Mounier, J., Gelsomino, R., Goerges, S., Vancanneyt, M., Vandemeulebroecke, K., Hoste, B., Brennan, N. M., Scherer, S. & Swings, J. ( 2005; ). Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol 71, 6489–6500.[CrossRef]
    [Google Scholar]
  36. Norkrans, B. ( 1966; ). Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Microbiol 54, 374–392.
    [Google Scholar]
  37. Norkrans, B. & Kylin, A. ( 1969; ). Regulation of the potassium to sodium ratio and of the osmotic potential in relation to salt tolerance in yeasts. J Bacteriol 100, 836–845.
    [Google Scholar]
  38. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  39. Prista, C., Almagro, A., Loureiro-Dias, M. C. & Ramos, J. ( 1997; ). Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63, 4005–4009.
    [Google Scholar]
  40. Prista, C., Almagro, A., Loureiro-Dias, M. C. & Ramos, J. ( 1998; ). Kinetics of cation movements in Debaryomyces hansenii. Folia Microbiol (Praha) 43, 212–214.[CrossRef]
    [Google Scholar]
  41. Prista, C., Soeiro, A., Vesely, P., Almagro, A., Ramos, J. & Loureiro-Dias, M. C. ( 2002; ). Genes from Debaryomyces hansenii increase salt tolerance in Saccharomyces cerevisiae W303. FEMS Yeast Res 2, 151–157.
    [Google Scholar]
  42. Prista, C., Loureiro-Dias, M. C., Montiel, V., Garcia, R. & Ramos, J. ( 2005; ). Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5, 693–701.[CrossRef]
    [Google Scholar]
  43. Pronk, J. T. ( 2002; ). Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68, 2095–2100.[CrossRef]
    [Google Scholar]
  44. Ramos, J. & Rodriguez-Navarro, A. ( 1986; ). Regulation of the potassium transport systems of Saccharomyces cerevisiae as revealed by rubidium transport. Eur J Biochem 154, 307–311.[CrossRef]
    [Google Scholar]
  45. Ramos, J., Haro, R. & Rodriguez-Navarro, A. ( 1990; ). Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochim Biophys Acta 1029, 211–217.[CrossRef]
    [Google Scholar]
  46. Ramos, J., Alijo, R., Haro, R. & Rodriguez-Navarro, A. ( 1994; ). TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. J Bacteriol 176, 249–252.
    [Google Scholar]
  47. Rodriguez-Navarro, A. ( 2000; ). Potassium transport in fungi and plants. Biochim Biophys Acta 1469, 1–30.[CrossRef]
    [Google Scholar]
  48. Rodriguez-Navarro, A. & Ramos, J. ( 1984; ). Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol 159, 940–945.
    [Google Scholar]
  49. Rodriguez-Navarro, A. & Rubio, F. ( 2006; ). High-affinity potassium and sodium transport systems in plants. J Exp Bot 57, 1149–1160.[CrossRef]
    [Google Scholar]
  50. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  51. Santa-Maria, G. E., Rubio, F., Dubcovsky, J. & Rodriguez-Navarro, A. ( 1997; ). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9, 2281–2289.[CrossRef]
    [Google Scholar]
  52. Santos, M. A., Keith, G. & Tuite, M. F. ( 1993; ). Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3′ (leucine) anticodon. EMBO J 12, 607–616.
    [Google Scholar]
  53. Schmitt, M. E., Brown, T. A. & Trumpower, B. L. ( 1990; ). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18, 3091–3092.[CrossRef]
    [Google Scholar]
  54. Senn, M. E., Rubio, F., Banuelos, M. A. & Rodriguez-Navarro, A. ( 2001; ). Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276, 44563–44569.[CrossRef]
    [Google Scholar]
  55. Serrano, R. ( 1996; ). Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165, 1–52.
    [Google Scholar]
  56. Surguchov, A. P. ( 1988; ). ‘Omnipotent' nonsense suppressors: new clues to an old puzzle. Trends Biochem Sci 13, 120–123.[CrossRef]
    [Google Scholar]
  57. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  58. Walker, D. J., Black, C. R. & Miller, A. J. ( 1998; ). The role of cytosolic potassium and pH in the growth of barley roots. Plant Physiol 118, 957–964.[CrossRef]
    [Google Scholar]
  59. Wallis, J. W., Chrebet, G., Brodsky, M., Rolfe, M. & Rothstein, R. ( 1989; ). A hyper-recombination mutation in Saccharomyces cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58, 409–419.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006080-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006080-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error