1887

Abstract

has become a serious nosocomial pathogen frequently causing infections associated with implanted foreign materials. Biofilm formation is considered a major factor determining pathogenicity in such device-associated infections. Here, evidence is presented that extracellular DNA is important for the initial phase of biofilm development by on polystyrene or glass surfaces under static or hydrodynamic conditions. Comparative PCR amplification from chromosomal and extracellular DNA indicated that the extracellular DNA is similar to chromosomal DNA. Experiments involving the wild-type and an isogenic mutant indicated that most of the extracellular DNA in cultures and biofilms is generated through activity of the autolysin AtlE. The presented results suggest that extracellular DNA is generated in populations through AtlE-mediated lysis of a subpopulation of the bacteria, and that the extracellular DNA promotes biofilm formation of the remaining population.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006031-0
2007-07-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2083.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006031-0&mimeType=html&fmt=ahah

References

  1. Allesen-Holm M., Barken K. B., Yang L., Klausen M., Webb J. S., Kjelleberg S., Molin S., Givskov M., Tolker-Nielsen T.. 2006; A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol59:1114–1128[CrossRef]
    [Google Scholar]
  2. Bruckner R.. 1997; Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett151:1–8[CrossRef]
    [Google Scholar]
  3. Brunskill E. W., Bayles K. W.. 1996; Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J Bacteriol178:611–618
    [Google Scholar]
  4. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H.. 1982; Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun37:318–326
    [Google Scholar]
  5. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H.. 1985; Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol22:996–1006
    [Google Scholar]
  6. Clark J. D., Maaløe O.. 1967; DNA replication and the cell cycle in Escherichia coli cells. J Mol Biol23:99–112[CrossRef]
    [Google Scholar]
  7. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M.. 1995; Microbial biofilms. Annu Rev Microbiol49:711–745[CrossRef]
    [Google Scholar]
  8. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P.. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280:295–298[CrossRef]
    [Google Scholar]
  9. Dubnau D.. 1999; DNA uptake in bacteria. Annu Rev Microbiol53:217–244[CrossRef]
    [Google Scholar]
  10. Flemming H. C., Wingender J., Griegbe T., Mayer C.. 2000; Physicochemical properties of biofilms. In Biofilms: Recent Advances in their Study and Control pp19–34 Edited by Evans L. V.. Amsterdam: Harwood Academic Publishers;
    [Google Scholar]
  11. Gill S. R., Fouts D. E., Archer G. L., Mongodin E. F., Deboy R. T., Ravel J., Paulsen I. T., Kolonay J. F., Brinkac L.. other authors 2005; Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol187:2426–2438[CrossRef]
    [Google Scholar]
  12. Gotz F.. 2002; Staphylococcus and biofilms. Mol Microbiol43:1367–1378[CrossRef]
    [Google Scholar]
  13. Gotz F., Heilmann C., Cramton S. E.. 2000; Molecular basis of catheter associated infections by staphylococci. Adv Exp Med Biol485:103–111
    [Google Scholar]
  14. Haagensen J. A., Klausen M., Ernst R. K., Miller S. I., Folkesson A., Tolker-Nielsen T., Molin S.. 2007; Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol189:28–37[CrossRef]
    [Google Scholar]
  15. Heilmann C., Gerke C., Perdreau-Remington F., Gotz F.. 1996a; Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun64:277–282
    [Google Scholar]
  16. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Gotz F.. 1996b; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol20:1083–1091[CrossRef]
    [Google Scholar]
  17. Heilmann C., Hussain M., Peters G., Gotz F.. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol24:1013–1024[CrossRef]
    [Google Scholar]
  18. Heilmann C., Thumm G., Chhatwal G. S., Hartleib J., Uekotter A., Peters G.. 2003; Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology149:2769–2778[CrossRef]
    [Google Scholar]
  19. Inamine G. S., Dubnau D.. 1995; ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol177:3045–3051
    [Google Scholar]
  20. Jager S., Mack D., Rohde H., Horstkotte M. A., Knobloch J. K.. 2005; Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor σ B. Appl Environ Microbiol71:5577–5581[CrossRef]
    [Google Scholar]
  21. Lorenz M. G., Gerjets D., Wackernagel W.. 1991; Release of transforming plasmid and chromosomal DNA from two cultured soil bacteria. Arch Microbiol156:319–326[CrossRef]
    [Google Scholar]
  22. Mack D.. 1999; Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J Hosp Infect43:SupplS113–S125[CrossRef]
    [Google Scholar]
  23. Mack D., Siemssen N., Laufs R.. 1992; Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis : evidence for functional relation to intercellular adhesion. Infect Immun60:2048–2057
    [Google Scholar]
  24. Mah T. F., O'Toole G. A.. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol9:34–39[CrossRef]
    [Google Scholar]
  25. Moller S., Sternberg C., Andersen J. B., Christensen B. B., Ramos J. L., Givskov M., Molin S.. 1998; In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol64:721–732
    [Google Scholar]
  26. Nemoto K., Hirota K., Murakami K., Taniguti K., Murata H., Viducic D., Miyake Y.. 2003; Effect of Varidase (streptodornase) on biofilm formed by Pseudomonas aeruginosa. Chemotherapy49:121–125[CrossRef]
    [Google Scholar]
  27. Palmen R., Hellingwerf K. J.. 1995; Acinetobacter calcoaceticus liberates chromosomal DNA during induction of competence by cell lysis. Curr Microbiol30:7–10[CrossRef]
    [Google Scholar]
  28. Petersen F. C., Pecharki D., Scheie A. A.. 2004; Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide. J Bacteriol186:6327–6331[CrossRef]
    [Google Scholar]
  29. Petersen F. C., Tao L., Scheie A. A.. 2005; DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J Bacteriol187:4392–4400[CrossRef]
    [Google Scholar]
  30. Qin Z., Yang X., Yang L., Jiang J., Ou Y., Molin S., Qu D.. 2007; Formation and properties of in vitro biofilms of ica -negative Staphylococcus epidermidis clinical isolates. J Med Microbiol56:83–93[CrossRef]
    [Google Scholar]
  31. Resch A., Fehrenbacher B., Eisele K., Schaller M., Gotz F.. 2005; Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol Lett252:89–96[CrossRef]
    [Google Scholar]
  32. Rupp M. E., Archer G. L.. 1994; Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis19:231–243[CrossRef]
    [Google Scholar]
  33. Rupp M. E., Fey P. D., Heilmann C., Gotz F.. 2001; Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis183:1038–1042[CrossRef]
    [Google Scholar]
  34. Steinmoen H., Knutsen E., Havarstein L. S.. 2002; Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A99:7681–7686[CrossRef]
    [Google Scholar]
  35. Stewart P. S., Costerton J. W.. 2001; Antibiotic resistance of bacteria in biofilms. Lancet358:135–138[CrossRef]
    [Google Scholar]
  36. Sutherland I. W.. 2001; The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol9:222–227[CrossRef]
    [Google Scholar]
  37. Vuong C., Gotz F., Otto M.. 2000; Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun68:1048–1053[CrossRef]
    [Google Scholar]
  38. Vuong C., Gerke C., Somerville G. A., Fischer E. R., Otto M.. 2003; Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis188:706–718[CrossRef]
    [Google Scholar]
  39. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S.. 2002; Extracellular DNA required for bacterial biofilm formation. Science295:1487[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006031-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006031-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error