1887

Abstract

Czf1p has been demonstrated to regulate the switch between the yeast-cell morphology and filamentous morphologies of the human fungal pathogen . The predicted amino acid sequence of Czf1p contains a zinc-cluster motif similar to the DNA-binding domains of proteins such as Gal4p, suggesting that Czf1p is a DNA-binding protein. Czf1p also demonstrates genetic interaction and a two-hybrid interaction with a second regulator of cellular morphology, Efg1p. During growth in contact with an agar matrix, Efg1p has a negative effect on filamentation and Czf1p antagonizes this effect. In addition to regulating cellular morphology, Efg1p plays a role in regulating the cell-type switch between the commonly observed white phase of and the opaque, mating-competent phase. While overexpression of stimulates the switch from opaque to white, the results reported here demonstrate that overexpression of promotes the reverse switch, from white to opaque. We also demonstrate that Czf1p binds promoter DNA . Therefore, for the regulation of both contact-dependent filamentation and white–opaque switching, Czf1p and Efg1p have opposing functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005983-0
2007-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2877.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005983-0&mimeType=html&fmt=ahah

References

  1. Anderson, J. M. & Soll, D. R. ( 1987; ). Unique phenotype of opaque cells in the white–opaque transition of Candida albicans. J Bacteriol 169, 5579–5588.
    [Google Scholar]
  2. Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J. & Struhl, K. ( 1989; ). Current Protocols in Molecular Biology. New York: Wiley.
  3. Bahn, Y. S. & Sundstrom, P. ( 2001; ). CAP1, an adenylate cyclase-associated protein gene, regulates bud–hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J Bacteriol 183, 3211–3223.[CrossRef]
    [Google Scholar]
  4. Bertram, G., Swoboda, R. K., Gooday, G. W., Gow, N. A. & Brown, A. J. ( 1996; ). Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. Yeast 12, 115–127.[CrossRef]
    [Google Scholar]
  5. Brown, D. H., Jr, Giusani, A. D., Chen, X. & Kumamoto, C. A. ( 1999; ). Filamentous growth of Candida albicans in response to physical environmental cues, and its regulation by the unique CZF1 gene. Mol Microbiol 34, 651–662.[CrossRef]
    [Google Scholar]
  6. Calderone, R. A. & Fonzi, W. A. ( 2001; ). Virulence factors of Candida albicans. Trends Microbiol 9, 327–335.[CrossRef]
    [Google Scholar]
  7. Doedt, T., Krishnamurthy, S., Bockmuhl, D. P., Tebarth, B., Stempel, C., Russell, C. L., Brown, A. J. & Ernst, J. F. ( 2004; ). APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15, 3167–3180.[CrossRef]
    [Google Scholar]
  8. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  9. Giusani, A. D., Vinces, M. & Kumamoto, C. A. ( 2002; ). Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160, 1749–1753.
    [Google Scholar]
  10. Huang, G., Wang, H., Chou, S., Nie, X., Chen, J. & Liu, H. ( 2006; ). Bistable expression of WOR1, a master regulator of white–opaque switching in Candida albicans. Proc Natl Acad Sci U S A 103, 12813–12818.[CrossRef]
    [Google Scholar]
  11. Janbon, G., Sherman, F. & Rustchenko, E. ( 1998; ). Monosomy of a specific chromosome determines l-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc Natl Acad Sci U S A 95, 5150–5155.[CrossRef]
    [Google Scholar]
  12. Kumamoto, C. A. & Vinces, M. D. ( 2005; ). Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7, 1546–1554.[CrossRef]
    [Google Scholar]
  13. Kvaal, C. A., Srikantha, T. & Soll, D. R. ( 1997; ). Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect Immun 65, 4468–4475.
    [Google Scholar]
  14. Kvaal, C., Lachke, S. A., Srikantha, T., Daniels, K., McCoy, J. & Soll, D. R. ( 1999; ). Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67, 6652–6662.
    [Google Scholar]
  15. Lachke, S. A., Srikantha, T. & Soll, D. R. ( 2003a; ). The regulation of EFG1 in white–opaque switching in Candida albicans involves overlapping promoters. Mol Microbiol 48, 523–536.[CrossRef]
    [Google Scholar]
  16. Lachke, S. A., Lockhart, S. R., Daniels, K. J. & Soll, D. R. ( 2003b; ). Skin facilitates Candida albicans mating. Infect Immun 71, 4970–4976.[CrossRef]
    [Google Scholar]
  17. Lan, C. Y., Newport, G., Murillo, L. A., Jones, T., Scherer, S., Davis, R. W. & Agabian, N. ( 2002; ). Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A 99, 14907–14912.[CrossRef]
    [Google Scholar]
  18. Lane, S., Birse, C., Zhou, S., Matson, R. & Liu, H. ( 2001; ). DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276, 48988–48996.[CrossRef]
    [Google Scholar]
  19. Lo, H.-J., Köhler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. & Fink, G. R. ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.[CrossRef]
    [Google Scholar]
  20. Lockhart, S. R., Pujol, C., Daniels, K. J., Miller, M. G., Johnson, A. D., Pfaller, M. A. & Soll, D. R. ( 2002; ). In Candida albicans, white–opaque switchers are homozygous for mating type. Genetics 162, 737–745.
    [Google Scholar]
  21. Magee, B. B. & Magee, P. T. ( 2000; ). Induction of mating in Candida albicans by construction of MTL a and MTLα strains. Science 289, 310–313.[CrossRef]
    [Google Scholar]
  22. Magee, B. B., Legrand, M., Alarco, A. M., Raymond, M. & Magee, P. T. ( 2002; ). Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol Microbiol 46, 1345–1351.[CrossRef]
    [Google Scholar]
  23. Miller, M. G. & Johnson, A. D. ( 2002; ). White–opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293–302.[CrossRef]
    [Google Scholar]
  24. Nantel, A., Dignard, D., Bachewich, C., Harcus, D., Marcil, A., Bouin, A. P., Sensen, C. W., Hogues, H., van het Hoog, M. & other authors ( 2002; ). Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13, 3452–3465.[CrossRef]
    [Google Scholar]
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Slutsky, B., Staebell, M., Anderson, J., Risen, L., Pfaller, M. & Soll, D. R. ( 1987; ). “White–opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169, 189–197.
    [Google Scholar]
  27. Sohn, K., Urban, C., Brunner, H. & Rupp, S. ( 2003; ). EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 47, 89–102.
    [Google Scholar]
  28. Soll, D. R. ( 2004; ). Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 26, 10–20.[CrossRef]
    [Google Scholar]
  29. Sonneborn, A., Tebarth, B. & Ernst, J. F. ( 1999; ). Control of white–opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun 67, 4655–4660.
    [Google Scholar]
  30. Srikantha, T., Borneman, A. R., Daniels, K. J., Pujol, C., Wu, W., Seringhaus, M. R., Gerstein, M., Yi, S., Snyder, M. & Soll, D. R. ( 2006; ). TOS9 regulates white–opaque switching in Candida albicans. Eukaryot Cell 5, 1674–1687.[CrossRef]
    [Google Scholar]
  31. Staib, P., Kretschmar, M., Nichterlein, T., Hof, H. & Morschhauser, J. ( 2002; ). Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun 70, 921–927.[CrossRef]
    [Google Scholar]
  32. Stoldt, V. R., Sonnenborn, A., Leuker, C. E. & Ernst, J. F. ( 1997; ). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16, 1982–1991.[CrossRef]
    [Google Scholar]
  33. Sudbery, P., Gow, N. & Berman, J. ( 2004; ). The distinct morphogenic states of Candida albicans. Trends Microbiol 12, 317–324.[CrossRef]
    [Google Scholar]
  34. Tsong, A. E., Miller, M. G., Raisner, R. M. & Johnson, A. D. ( 2003; ). Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115, 389–399.[CrossRef]
    [Google Scholar]
  35. Vinces, M. D., Haas, C. & Kumamoto, C. A. ( 2006; ). Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efg1p and Czf1p. Eukaryot Cell 5, 825–835.[CrossRef]
    [Google Scholar]
  36. Wenzel, R. P. ( 1995; ). Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis 20, 1531–1534.[CrossRef]
    [Google Scholar]
  37. Whiteway, M., Dignard, D. & Thomas, D. Y. ( 1992; ). Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc Natl Acad Sci U S A 89, 9410–9414.[CrossRef]
    [Google Scholar]
  38. Zhao, R., Daniels, K. J., Lockhart, S. R., Yeater, K. M., Hoyer, L. L. & Soll, D. R. ( 2005; ). Unique aspects of gene expression during Candida albicans mating and possible G(1) dependency. Eukaryot Cell 4, 1175–1190.[CrossRef]
    [Google Scholar]
  39. Zordan, R. E., Galgoczy, D. J. & Johnson, A. D. ( 2006; ). Epigenetic properties of white–opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci U S A 103, 12807–12812.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005983-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005983-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error