1887

Abstract

A new lactococcal plasmid, pDBORO, was isolated from the subsp. biovar strain DB0410. This plasmid is responsible for the sensitivity of DB0410 to the toxic pyrimidine analogue 5-fluoroorotate. The complete nucleotide sequence has been determined and amounts to 16 404 bp. Of 15 ORFs encountered, three were found to be insertion sequence (IS) elements, identified as two IS and one IS. Two ORFs are incomplete due to the insertion of an IS element in their C-terminal region. Homologues for four ORFs were found in the IL1403 sequence: the gene, coding for a copper-potassium-transporting ATPase B, and the , and genes. The structural organization of the pDBORO replication region is highly similar to other theta-replicating plasmids in both the - () and -acting ( and ) sequences. By plasmid deletion analysis and molecular cloning, a single locus on pDBORO was found to confer sensitivity to 5-fluoroorotate. It was identified as , but renamed in order to reflect its function. The gene was found to be essential for the utilization of orotate as the sole pyrimidine source in a strain deficient in pyrimidine synthesis. The amino acid sequence encoded by the ORF showed the characteristic features of a membrane protein. Therefore, most probably encodes an orotate transporter. Surprisingly, homologues of could be identified in the genomes of both MG1363 and IL1403 despite the fact that these strains were unable to significantly utilize orotate. Cloning of in and showed that the orotate transport phenotype could be transformed to both organisms. The findings presented indicate that can be used as a powerful, food-grade selection/counterselection marker in many different organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005959-0
2007-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3645.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005959-0&mimeType=html&fmt=ahah

References

  1. Andersen P. S., Jansen P. J., Hammer K. 1994; Two different dihydroorotate dehydrogenases in Lactococcus lactis. J Bacteriol 176:3975–3982
    [Google Scholar]
  2. Andersen P. S., Martinussen J., Hammer K. 1996; Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis. J Bacteriol 178:5005–5012
    [Google Scholar]
  3. Antoniewski C., Savelli B., Stragier P. 1990; The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J Bacteriol 172:86–93
    [Google Scholar]
  4. Baker K. E., Ditullio K. P., Neuhard J., Kelln R. A. 1996; Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA. J Bacteriol 178:7099–7105
    [Google Scholar]
  5. Biswas I., Gruss A., Ehrlich S. D., Maguin E. 1993; High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175:3628–3635
    [Google Scholar]
  6. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753
    [Google Scholar]
  7. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. 1972; Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol 110:281–290
    [Google Scholar]
  8. Braun V. Jr, Hertwig S., Neve H., Geis A., Teuber M. 1989; Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles. J Gen Microbiol 135:2551–2560
    [Google Scholar]
  9. Breuner A., Brondsted L., Hammer K. 1999; Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1. J Bacteriol 181:7291–7297
    [Google Scholar]
  10. Chopin A., Chopin M. C., Moillo-Batt A., Langella P. 1984; Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11:260–263
    [Google Scholar]
  11. Clark D. J., Maaloe O. 1967; DNA replication and the cell cycle in Escherichia coli. J Mol Biol 23:99–112
    [Google Scholar]
  12. Curic M., Stuer-Lauridsen B., Renault P., Nilsson D. 1999; A general method for selection of alpha-acetolactate decarboxylase-deficient Lactococcus lactis mutants to improve diacetyl formation. Appl Environ Microbiol 65:1202–1206
    [Google Scholar]
  13. Efstathiou J. D., McKay L. L. 1976; Plasmids in Streptococcus lactis: evidence that lactose metabolism and proteinase activity are plasmid linked. Appl Environ Microbiol 32:38–44
    [Google Scholar]
  14. Emond E., Lavallee R., Drolet G., Moineau S., LaPointe G. 2001; Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl Environ Microbiol 67:1700–1709
    [Google Scholar]
  15. Frere J., Novel M., Novel G. 1993; Molecular analysis of the Lactococcus lactis subspecies lactis CNRZ270 bidirectional theta replicating lactose plasmid pUCL22. Mol Microbiol 10:1113–1124
    [Google Scholar]
  16. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  17. Gravesen A., Josephsen J., von Wright A., Vogensen F. K. 1995; Characterization of the replicon from the lactococcal theta-replicating plasmid pJW563. Plasmid 34:105–118
    [Google Scholar]
  18. Hayes F., Daly C., Fitzgerald G. F. 1990; Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 plasmid pCI305. Appl Environ Microbiol 56:202–209
    [Google Scholar]
  19. Hayes F., Vos P., Fitzgerald G. F., de Vos W. M., Daly C. 1991; Molecular organization of the minimal replicon of novel, narrow-host-range, lactococcal plasmid pCI305. Plasmid 25:16–26
    [Google Scholar]
  20. Holo H., Nes I. F. 1995; Transformation of Lactococcus by electroporation. Methods Mol Biol 47:195–199
    [Google Scholar]
  21. Huggins A. R., Sandine W. E. 1977; Incidence and properties of temperate bacteriophages induced from lactic streptococci. Appl Environ Microbiol 33:184–191
    [Google Scholar]
  22. Jensen P. R., Hammer K. 1993; Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 59:4363–4366
    [Google Scholar]
  23. Johansen E., Kibenich A. 1992; Characterization of Leuconostoc isolates from commercial mixed strain mesophilic starter cultures. J Dairy Sci 75:1186–1191
    [Google Scholar]
  24. Jorgensen C. M., Hammer K., Martinussen J. 2003; CTP limitation increases expression of CTP synthase in Lactococcus lactis. J Bacteriol 185:6562–6574
    [Google Scholar]
  25. Jorgensen C. M., Hammer K., Jensen P. R., Martinussen J. 2004; Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis. Eur J Biochem 271:2438–2445
    [Google Scholar]
  26. Kilstrup M., Martinussen J. 1998; A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis. J Bacteriol 180:3907–3916
    [Google Scholar]
  27. Kilstrup M., Hammer K., Ruhdal J. P., Martinussen J. 2005; Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29:555–590
    [Google Scholar]
  28. Kneifel W., Kaufmann M., Fleischer A., Ulberth F. 1992; Screening of commercially available mesophilic dairy starter cultures: biochemical, sensory, and microbiological properties. J Dairy Sci 75:3158–3166
    [Google Scholar]
  29. Larsen T. S., Krogh A. 2003; EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance. BMC Bioinformatics 4:21
    [Google Scholar]
  30. Lukashin A. V., Borodovsky M. 1998; GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115
    [Google Scholar]
  31. Maguin E., Duwat P., Hege T., Ehrlich D., Gruss A. 1992; New thermosensitive plasmid for gram-positive bacteria. J Bacteriol 174:5633–5638
    [Google Scholar]
  32. Mandel M., Higa A. 1992; Calcium-dependent bacteriophage DNA infection; 1970 Biotechnology 24:198–201
    [Google Scholar]
  33. Marcinkeviciene J., Tinney L. M., Wang K. H., Rogers M. J., Copeland R. A. 1999; Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism. Biochemistry 38:13129–13137
    [Google Scholar]
  34. Marcinkeviciene J., Jiang W., Locke G., Kopcho L. M., Rogers M. J., Copeland R. A. 2000; A second dihydroorotate dehydrogenase (Type A) of the human pathogen Enterococcus faecalis: expression, purification, and steady-state kinetic mechanism. Arch Biochem Biophys 377:178–186
    [Google Scholar]
  35. Martinussen J., Defoor E. M. C. 2005; Novel recombinant marker gene encoding orotate transporter polypeptide, useful as selection maker, screening marker, counter-selection marker or bi-directional marker for identifying and/or selecting cells. Patent no. WO2005078106-A1
    [Google Scholar]
  36. Martinussen J., Hammer K. 1994; Cloning and characterization of upp, a gene encoding uracil phosphoribosyltransferase from Lactococcus lactis. J Bacteriol 176:6457–6463
    [Google Scholar]
  37. Martinussen J., Hammer K. 1995; Powerful methods to establish chromosomal markers in Lactococcus lactis – an analysis of pyrimidine salvage pathway mutants obtained by positive selections. Microbiology 141:1883–1890
    [Google Scholar]
  38. Martinussen J., Hammer K. 1998; The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically. J Bacteriol 180:4380–4386
    [Google Scholar]
  39. Martinussen J., Andersen P. S., Hammer K. 1994; Nucleotide metabolism in Lactococcus lactis: salvage pathways of exogenous pyrimidines. J Bacteriol 176:1514–1516
    [Google Scholar]
  40. Martinussen J., Glaser P., Andersen P. S., Saxild H. H. 1995; Two genes encoding uracil phosphoribosyltransferase are present in Bacillus subtilis. J Bacteriol 177:271–274
    [Google Scholar]
  41. Martinussen J., Schallert J., Andersen B., Hammer K. 2001; The pyrimidine operon pyrRPB-carA from Lactococcus lactis. J Bacteriol 183:2785–2794
    [Google Scholar]
  42. Martinussen J., Wadskov-Hansen S. L., Hammer K. 2003; Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. J Bacteriol 185:1503–1508
    [Google Scholar]
  43. McKay L. L., Baldwin K. A., Efstathiou J. D. 1976; Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl Environ Microbiol 32:45–52
    [Google Scholar]
  44. Miller B. G., Snider M. J., Short S. A., Wolfenden R. 2000; Contribution of enzyme-phosphoribosyl contacts to catalysis by orotidine 5′-phosphate decarboxylase. Biochemistry 39:8113–8118
    [Google Scholar]
  45. Motyl T., Krzeminski J., Podgurniak M., Witeszczak C., Zochowski P. 1991; Variability of orotic acid concentration in cow's milk. Endocr Regul 25:79–82
    [Google Scholar]
  46. O'Sullivan D., Ross R. P., Twomey D. P., Fitzgerald G. F., Hill C., Coffey A. 2001; Naturally occurring lactococcal plasmid pAH90 links bacteriophage resistance and mobility functions to a food-grade selectable marker. Appl Environ Microbiol 67:929–937
    [Google Scholar]
  47. Odermatt A., Suter H., Krapf R., Solioz M. 1993; Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268:12775–12779
    [Google Scholar]
  48. Paik S. H., Chakicherla A., Hansen J. N. 1998; Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142
    [Google Scholar]
  49. Pedersen M. B., Iversen S. L., Sorensen K. I., Johansen E. 2005; The long and winding road from the research laboratory to industrial applications of lactic acid bacteria. FEMS Microbiol Rev 29:611–624
    [Google Scholar]
  50. Potvin B. W., Kelleher R. J. Jr, Gooder H. 1975; Pyrimidine biosynthetic pathway of Bacillus subtilis. J Bacteriol 123:604–615
    [Google Scholar]
  51. Romero D. A., Klaenhammer T. R. 1990; Characterization of insertion sequence IS 946, an Iso-ISS1 element, isolated from the conjugative lactococcal plasmid pTR2030. J Bacteriol 172:4151–4160
    [Google Scholar]
  52. Saidi B., Warthesen J. J. 1989; Analysis and stability of orotic acid in milk. J Dairy Sci 72:2900–2905
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Sping Harbor, NY: Cold Spring Habor Laboratory;
  54. Saxild H. H., Nygaard P. 1987; Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol 169:2977–2983
    [Google Scholar]
  55. Seegers J. F., Bron S., Franke C. M., Venema G., Kiewiet R. 1994; The majority of lactococcal plasmids carry a highly related replicon. Microbiology 140:1291–1300
    [Google Scholar]
  56. Suzuki I., Kato S., Kitada T., Yano N., Morichi T. 1986; Growth of Lactobacillus bulgaricus in milk. 2. Characteristics of purine nucleotides, pyrimidine nucleotides, and nucleic acid synthesis. J Dairy Sci 69:971–978
    [Google Scholar]
  57. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  58. von Wright A., Raty K. 1993; The nucleotide sequence for the replication region of pVS40, a lactococcal food grade cloning vector. Lett Appl Microbiol 17:25–28
    [Google Scholar]
  59. Wadskov-Hansen S. L., Martinussen J., Hammer K. 2000; The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor. Gene 241:157–166
    [Google Scholar]
  60. Wadskov-Hansen S. L., Willemoes M., Martinussen J., Hammer K., Neuhard J., Larsen S. 2001; Cloning and verification of the Lactococcus lactis pyrG gene and characterization of the gene product, CTP synthase. J Biol Chem 276:38002–38009
    [Google Scholar]
  61. Yu W., Gillies K., Kondo J. K., Broadbent J. R., McKay L. L. 1995a; Plasmid-mediated oligopeptide transport system in lactococci. Dev Biol Stand 85:509–521
    [Google Scholar]
  62. Yu W., Mierau I., Mars A., Johnson E., Dunny G., McKay L. L. 1995b; Novel insertion sequence-like element IS 982 in lactococci. Plasmid 33:218–225
    [Google Scholar]
  63. Yu W., Gillies K., Kondo J. K., Broadbent J. R., McKay L. L. 1996; Loss of plasmid-mediated oligopeptide transport system in lactococci: another reason for slow milk coagulation. Plasmid 35:145–155
    [Google Scholar]
  64. Yurgel S. N., Kahn M. L. 2005; Sinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids. J Bacteriol 187:1161–1172
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005959-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005959-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error