1887

Abstract

Listeriolysin O (LLO), a member of the cholesterol-dependent cytolysin (CDC) family, is a major virulence factor of and contributes to bacterial escape from intracellular killing of macrophages. LLO is activated under weakly acidic conditions; however, the molecular mechanism of this pH-dependent expression of cytolytic activity of LLO is poorly understood. In this study, CDCs including LLO, ivanolysin O (ILO), seeligeriolysin O (LSO), pneumolysin (PLY), streptolysin O (SLO) and perfringolysin O (PFO) were prepared as recombinant proteins and examined for their functional changes after treatment under various pH conditions. Haemolytic and membrane cholesterol-binding activities were not affected in PLY, SLO and PFO at any pH examined. By contrast, all the -derived cytolysins, LLO, ILO and LSO, were active only at an acidic pH and rapidly inactivated under neutral or alkaline conditions. Once inactivated, LLO could not be reactivated even by a downward pH shift. The hydrophobicity of LLO treated at neutral or alkaline pH was increased. These data suggested that the pH-dependent loss of cytolytic activity appeared to be due to irreversible structural changes of domain 4 that resulted in the loss of target membrane cholesterol binding.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005843-0
2007-07-01
2021-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2250.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005843-0&mimeType=html&fmt=ahah

References

  1. Alouf J. E. 1999; Introduction to family of the structurally related cholesterol-binding cytolysins (‘sulfhydryl-activated’ toxins). pp 443–456 In Bacterial Protein Toxins , 2nd edn. Edited by Alouf J. E., Freer J. H. San Diego, CA: Academic Press;
    [Google Scholar]
  2. Baba H., Kawamura I., Kohda C., Nomura T., Ito Y., Kimoto T., Watanabe I., Ichiyama S., Mitsuyama M. 2001; Essential role of domain 4 of pneumolysin from Streptococcus pneumoniae in cytolytic activity as determined by truncated proteins. Biochem Biophys Res Commun 281:37–44 [CrossRef]
    [Google Scholar]
  3. Beauregard K. E., Lee K. D., Collier R. J., Swanson J. A. 1997; pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J Exp Med 186:1159–1163 [CrossRef]
    [Google Scholar]
  4. Cossart P., Vincente M. F., Mengaud J., Basquero F., Perez-Diaz J. C., Berche P. 1989; Listeriolysin O is essential for the virulence of Listeria monocytogenes : direct evidence obtained by gene complementation. Infect Immun 57:3629–3639
    [Google Scholar]
  5. Frehel C., Lety M. A., Autret N., Bretti N., Berche P., Charbit A. 2003; Capacity of ivanolysin O to replace listeriolysin O in phagosomal escape and in vivo survival of Listeria monocytogenes. Microbiology 149:611–620 [CrossRef]
    [Google Scholar]
  6. Gaillard J. L., Berche P., Sanonetti P. 1986; Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52:50–55
    [Google Scholar]
  7. Geoffroy C., Gaillard J. L., Alouf J. E., Berche P. 1987; Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin of listeriolysin O. Infect Immun 55:1641–1646
    [Google Scholar]
  8. Glomski I. J., Geddle M. M., Tsang A. W., Swanson J. A., Portnoy D. A. 2002; The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 156:1029–1038 [CrossRef]
    [Google Scholar]
  9. Glomski I. J., Decature A. L., Portnoy D. A. 2003; Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 71:6754–6765 [CrossRef]
    [Google Scholar]
  10. Gormley E., Mengaud J., Cossart P. 1989; Sequences homologous to listeriolysin O gene region of Listeria monocytogenes are present in virulent and avirulent haemolytic species of the genus Listeria. Res Microbiol 140:631–643 [CrossRef]
    [Google Scholar]
  11. Heuck A. P., Hotze E. M., Tweten R. K., Johnson A. E. 2000; Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell 6:1233–1242 [CrossRef]
    [Google Scholar]
  12. Heuck A. P., Tweten R. K., Johnson A. E. 2003; Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J Biol Chem 278:31218–31225 [CrossRef]
    [Google Scholar]
  13. Ito Y., Kawamura I., Kohda C., Baba H., Kimoto T., Watanabe I., Nomura T., Mitsuyama M. 2001; Difference in cholesterol-binding and cytolytic activities between listeriolysin O and seeligeriolysin O: a possible role of alanine residue in tryptophan-rich undecapeptide. FEMS Microbiol Lett 203:185–189 [CrossRef]
    [Google Scholar]
  14. Jones S., Portnoy D. A. 1994; Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun 62:5608–5613
    [Google Scholar]
  15. Kehoe M. A., Miller L., Walker J. A., Boulnois G. J. 1987; Nucleotide sequence of the streptolysin O (SLO) gene: structural homologies between SLO and other membrane damaging, thiol-activated toxins. Infect Immun 55:3228–3232
    [Google Scholar]
  16. Kimoto T., Kawamura I., Kohda C., Nomura T., Tsuchiya K., Ito Y., Watanabe I., Kaku T., Setianingrum E., Mitsuyama M. 2003; Differences in gamma interferon production induced by listeriolysin O and ivanolysin O result in different levels of protective immunity in mice infected with Listeria monocytogenes and Listeria ivanovii. Infect Immun 71:2447–2454 [CrossRef]
    [Google Scholar]
  17. Kohda C., Kawamura I., Baba H., Nomura T., Ito Y., Kimoto T., Watanabe I., Mitsuyama M. 2002; Dissociated linkage of cytokine-inducing activity and cytotoxicity to different domains of listeriolysin O from Listeria monocytogenes. Infect Immun 70:1334–1341 [CrossRef]
    [Google Scholar]
  18. Leimeister-Wachter M., Chakraborty T. 1989; Detection of listeriolysin O, thiol-dependent hemolysin in Listeria monocytogenes, Listeria ivanovii , and Listeria seeligeri. Infect Immun 57:2350–2357
    [Google Scholar]
  19. Mengaud J., Chenevert J., Geoffroy C., Gaillard J. L., Cossart P. 1987; Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes : listeriolysin O is homologous to streptolysin O and pneumolysin. Infect Immun 55:3225–3227
    [Google Scholar]
  20. Nomura T., Kawamura I., Tsuchiya K., Kohda C., Baba H., Ito Y., Kimoto T., Watanabe I., Mitsuyama M. 2002; Essential role of interleukin-12 (IL-12) and IL-18 for gamma interferon production induced by listeriolysin O in mouse spleen cells. Infect Immun 70:1049–1055 [CrossRef]
    [Google Scholar]
  21. O'Connell R. M., Vaidya S. A., Perry A. K., Saha S. K., Dempsey P. W., Cheng G. 2005; Immune activation of type I IFNs by Listeria monocytogenes occurs independently of TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated NF- κ B kinase-binding kinase 1. J Immunol 174:1602–1607 [CrossRef]
    [Google Scholar]
  22. Portnoy D. A., Jacks P. S., Hinrichs D. 1988; Role of hemolysin for intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471 [CrossRef]
    [Google Scholar]
  23. Portnoy D. A., Tweten R. K., Kehoe M., Bielecki J. 1992; Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells. Infect Immun 60:2710–2717
    [Google Scholar]
  24. Qa'Dan M., Lea M., Spyres L. M., Ballard J. D. 2000; pH-induced conformational changes in Clostridium difficile toxin B. Infect Immun 68:2470–2474 [CrossRef]
    [Google Scholar]
  25. Qa'Dan M., Lea M., Spyres L. M., Ballard J. D. 2001; pH-enhanced cytopathic effects of Clostridium sordellii lethal toxin. Infect Immun 69:5487–5493 [CrossRef]
    [Google Scholar]
  26. Ramachandran R., Tweten R. K., Johnson A. E. 2004; Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β -strand alignment. Nat Struct Mol Biol 11:697–705 [CrossRef]
    [Google Scholar]
  27. Rossjohn J., Feil S. C., McKinstry W. J., Tweten R. K., Parker M. W. 1997; Structure of a cholesterol binding thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692 [CrossRef]
    [Google Scholar]
  28. Sampathkumar B., Xavier I. J., Yu L. S., Khachatourians G. G. 1999; Production of listeriolysin O by Listeria monocytogenes (Scott A) under heat-shock conditions. Int J Food Microbiol 48:131–137 [CrossRef]
    [Google Scholar]
  29. Schuerch D. W., Wilson-Kubalek E. M., Tweten R. K. 2005; Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci U S A 102:12537–12542 [CrossRef]
    [Google Scholar]
  30. Shimada Y., Maruya M., Iwashita S., Ohno-Iwashita Y. 2002; The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269:6195–6203 [CrossRef]
    [Google Scholar]
  31. Tilley S. J., Orlova E. V., Gilbert R. J., Andrew P. W., Saibil H. R. 2005; Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256 [CrossRef]
    [Google Scholar]
  32. Tweten R. K. 1988; Nucleotide sequence of the gene for perfringolysin O (theta toxin) from Clostridium perfringens : significant homology with the genes for streptolysin O and pneumolysin. Infect Immun 56:3235–3240
    [Google Scholar]
  33. Walker J. A., Allen R. L., Falmagne P., Johnson M. K., Boulnois G. 1987; Molecular cloning, characterization and complete nucleotide sequence of the gene for pneumolysin, the sulfydryl-activated toxin of Streptococcus pneumoniae. Infect Immun 55:1184–1189
    [Google Scholar]
  34. Watanabe I., Nomura T., Tominaga T., Yamamoto K., Kohda C., Kawamura I., Mitsuyama M. 2006; Dependence of the lethal effect of pore-forming cytolysins on the cytolytic activity. J Med Microbiol 55:505–510 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005843-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005843-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error