1887

Abstract

Listeriolysin O (LLO), a member of the cholesterol-dependent cytolysin (CDC) family, is a major virulence factor of and contributes to bacterial escape from intracellular killing of macrophages. LLO is activated under weakly acidic conditions; however, the molecular mechanism of this pH-dependent expression of cytolytic activity of LLO is poorly understood. In this study, CDCs including LLO, ivanolysin O (ILO), seeligeriolysin O (LSO), pneumolysin (PLY), streptolysin O (SLO) and perfringolysin O (PFO) were prepared as recombinant proteins and examined for their functional changes after treatment under various pH conditions. Haemolytic and membrane cholesterol-binding activities were not affected in PLY, SLO and PFO at any pH examined. By contrast, all the -derived cytolysins, LLO, ILO and LSO, were active only at an acidic pH and rapidly inactivated under neutral or alkaline conditions. Once inactivated, LLO could not be reactivated even by a downward pH shift. The hydrophobicity of LLO treated at neutral or alkaline pH was increased. These data suggested that the pH-dependent loss of cytolytic activity appeared to be due to irreversible structural changes of domain 4 that resulted in the loss of target membrane cholesterol binding.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005843-0
2007-07-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2250.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005843-0&mimeType=html&fmt=ahah

References

  1. Alouf, J. E. ( 1999; ). Introduction to family of the structurally related cholesterol-binding cytolysins (‘sulfhydryl-activated’ toxins), pp. 443–456. In Bacterial Protein Toxins, 2nd edn. Edited by J. E. Alouf & J. H. Freer. San Diego, CA: Academic Press.
  2. Baba, H., Kawamura, I., Kohda, C., Nomura, T., Ito, Y., Kimoto, T., Watanabe, I., Ichiyama, S. & Mitsuyama, M. ( 2001; ). Essential role of domain 4 of pneumolysin from Streptococcus pneumoniae in cytolytic activity as determined by truncated proteins. Biochem Biophys Res Commun 281, 37–44.[CrossRef]
    [Google Scholar]
  3. Beauregard, K. E., Lee, K. D., Collier, R. J. & Swanson, J. A. ( 1997; ). pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J Exp Med 186, 1159–1163.[CrossRef]
    [Google Scholar]
  4. Cossart, P., Vincente, M. F., Mengaud, J., Basquero, F., Perez-Diaz, J. C. & Berche, P. ( 1989; ). Listeriolysin O is essential for the virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect Immun 57, 3629–3639.
    [Google Scholar]
  5. Frehel, C., Lety, M. A., Autret, N., Bretti, N., Berche, P. & Charbit, A. ( 2003; ). Capacity of ivanolysin O to replace listeriolysin O in phagosomal escape and in vivo survival of Listeria monocytogenes. Microbiology 149, 611–620.[CrossRef]
    [Google Scholar]
  6. Gaillard, J. L., Berche, P. & Sanonetti, P. ( 1986; ). Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52, 50–55.
    [Google Scholar]
  7. Geoffroy, C., Gaillard, J. L., Alouf, J. E. & Berche, P. ( 1987; ). Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin of listeriolysin O. Infect Immun 55, 1641–1646.
    [Google Scholar]
  8. Glomski, I. J., Geddle, M. M., Tsang, A. W., Swanson, J. A. & Portnoy, D. A. ( 2002; ). The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 156, 1029–1038.[CrossRef]
    [Google Scholar]
  9. Glomski, I. J., Decature, A. L. & Portnoy, D. A. ( 2003; ). Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 71, 6754–6765.[CrossRef]
    [Google Scholar]
  10. Gormley, E., Mengaud, J. & Cossart, P. ( 1989; ). Sequences homologous to listeriolysin O gene region of Listeria monocytogenes are present in virulent and avirulent haemolytic species of the genus Listeria. Res Microbiol 140, 631–643.[CrossRef]
    [Google Scholar]
  11. Heuck, A. P., Hotze, E. M., Tweten, R. K. & Johnson, A. E. ( 2000; ). Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell 6, 1233–1242.[CrossRef]
    [Google Scholar]
  12. Heuck, A. P., Tweten, R. K. & Johnson, A. E. ( 2003; ). Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J Biol Chem 278, 31218–31225.[CrossRef]
    [Google Scholar]
  13. Ito, Y., Kawamura, I., Kohda, C., Baba, H., Kimoto, T., Watanabe, I., Nomura, T. & Mitsuyama, M. ( 2001; ). Difference in cholesterol-binding and cytolytic activities between listeriolysin O and seeligeriolysin O: a possible role of alanine residue in tryptophan-rich undecapeptide. FEMS Microbiol Lett 203, 185–189.[CrossRef]
    [Google Scholar]
  14. Jones, S. & Portnoy, D. A. ( 1994; ). Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun 62, 5608–5613.
    [Google Scholar]
  15. Kehoe, M. A., Miller, L., Walker, J. A. & Boulnois, G. J. ( 1987; ). Nucleotide sequence of the streptolysin O (SLO) gene: structural homologies between SLO and other membrane damaging, thiol-activated toxins. Infect Immun 55, 3228–3232.
    [Google Scholar]
  16. Kimoto, T., Kawamura, I., Kohda, C., Nomura, T., Tsuchiya, K., Ito, Y., Watanabe, I., Kaku, T., Setianingrum, E. & Mitsuyama, M. ( 2003; ). Differences in gamma interferon production induced by listeriolysin O and ivanolysin O result in different levels of protective immunity in mice infected with Listeria monocytogenes and Listeria ivanovii. Infect Immun 71, 2447–2454.[CrossRef]
    [Google Scholar]
  17. Kohda, C., Kawamura, I., Baba, H., Nomura, T., Ito, Y., Kimoto, T., Watanabe, I. & Mitsuyama, M. ( 2002; ). Dissociated linkage of cytokine-inducing activity and cytotoxicity to different domains of listeriolysin O from Listeria monocytogenes. Infect Immun 70, 1334–1341.[CrossRef]
    [Google Scholar]
  18. Leimeister-Wachter, M. & Chakraborty, T. ( 1989; ). Detection of listeriolysin O, thiol-dependent hemolysin in Listeria monocytogenes, Listeria ivanovii, and Listeria seeligeri. Infect Immun 57, 2350–2357.
    [Google Scholar]
  19. Mengaud, J., Chenevert, J., Geoffroy, C., Gaillard, J. L. & Cossart, P. ( 1987; ). Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes: listeriolysin O is homologous to streptolysin O and pneumolysin. Infect Immun 55, 3225–3227.
    [Google Scholar]
  20. Nomura, T., Kawamura, I., Tsuchiya, K., Kohda, C., Baba, H., Ito, Y., Kimoto, T., Watanabe, I. & Mitsuyama, M. ( 2002; ). Essential role of interleukin-12 (IL-12) and IL-18 for gamma interferon production induced by listeriolysin O in mouse spleen cells. Infect Immun 70, 1049–1055.[CrossRef]
    [Google Scholar]
  21. O'Connell, R. M., Vaidya, S. A., Perry, A. K., Saha, S. K., Dempsey, P. W. & Cheng, G. ( 2005; ). Immune activation of type I IFNs by Listeria monocytogenes occurs independently of TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated NF-κB kinase-binding kinase 1. J Immunol 174, 1602–1607.[CrossRef]
    [Google Scholar]
  22. Portnoy, D. A., Jacks, P. S. & Hinrichs, D. ( 1988; ). Role of hemolysin for intracellular growth of Listeria monocytogenes. J Exp Med 167, 1459–1471.[CrossRef]
    [Google Scholar]
  23. Portnoy, D. A., Tweten, R. K., Kehoe, M. & Bielecki, J. ( 1992; ). Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells. Infect Immun 60, 2710–2717.
    [Google Scholar]
  24. Qa'Dan, M., Lea, M., Spyres, L. M. & Ballard, J. D. ( 2000; ). pH-induced conformational changes in Clostridium difficile toxin B. Infect Immun 68, 2470–2474.[CrossRef]
    [Google Scholar]
  25. Qa'Dan, M., Lea, M., Spyres, L. M. & Ballard, J. D. ( 2001; ). pH-enhanced cytopathic effects of Clostridium sordellii lethal toxin. Infect Immun 69, 5487–5493.[CrossRef]
    [Google Scholar]
  26. Ramachandran, R., Tweten, R. K. & Johnson, A. E. ( 2004; ). Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment. Nat Struct Mol Biol 11, 697–705.[CrossRef]
    [Google Scholar]
  27. Rossjohn, J., Feil, S. C., McKinstry, W. J., Tweten, R. K. & Parker, M. W. ( 1997; ). Structure of a cholesterol binding thiol-activated cytolysin and a model of its membrane form. Cell 89, 685–692.[CrossRef]
    [Google Scholar]
  28. Sampathkumar, B., Xavier, I. J., Yu, L. S. & Khachatourians, G. G. ( 1999; ). Production of listeriolysin O by Listeria monocytogenes (Scott A) under heat-shock conditions. Int J Food Microbiol 48, 131–137.[CrossRef]
    [Google Scholar]
  29. Schuerch, D. W., Wilson-Kubalek, E. M. & Tweten, R. K. ( 2005; ). Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci U S A 102, 12537–12542.[CrossRef]
    [Google Scholar]
  30. Shimada, Y., Maruya, M., Iwashita, S. & Ohno-Iwashita, Y. ( 2002; ). The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269, 6195–6203.[CrossRef]
    [Google Scholar]
  31. Tilley, S. J., Orlova, E. V., Gilbert, R. J., Andrew, P. W. & Saibil, H. R. ( 2005; ). Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247–256.[CrossRef]
    [Google Scholar]
  32. Tweten, R. K. ( 1988; ). Nucleotide sequence of the gene for perfringolysin O (theta toxin) from Clostridium perfringens: significant homology with the genes for streptolysin O and pneumolysin. Infect Immun 56, 3235–3240.
    [Google Scholar]
  33. Walker, J. A., Allen, R. L., Falmagne, P., Johnson, M. K. & Boulnois, G. ( 1987; ). Molecular cloning, characterization and complete nucleotide sequence of the gene for pneumolysin, the sulfydryl-activated toxin of Streptococcus pneumoniae. Infect Immun 55, 1184–1189.
    [Google Scholar]
  34. Watanabe, I., Nomura, T., Tominaga, T., Yamamoto, K., Kohda, C., Kawamura, I. & Mitsuyama, M. ( 2006; ). Dependence of the lethal effect of pore-forming cytolysins on the cytolytic activity. J Med Microbiol 55, 505–510.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005843-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005843-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error