1887

Abstract

Some adenine methyltransferases have been shown not only to protect specific DNA restriction sites from cleavage by a restriction endonuclease, but also to play a role in various bacterial processes and sometimes in bacterial virulence. This study focused on a type I restriction–modification system (designated ) of . This system is composed of three adjacent genes which could potentially encode an -adenine DNA methylase (YamA), an enzyme involved in site-specific recognition (YrsA) and a restriction endonuclease (YreA). Screening of 85 isolates of and indicated that the system has been lost by and that (but not or ) is present in all strains tested, suggesting that it may be important at some stages of the epidemiological cycle of this species. To further investigate the role of in survival, multiplication or virulence, a Δ mutant of IP32953 was constructed by allelic exchange with a kanamycin cassette. The fact that Δ mutants were obtained indicated that this gene is not essential for viability. The IP32953Δ mutant strain grew as well as the wild-type in a rich medium at both 28 °C and 37 °C. It also grew normally in a chemically defined medium at 28 °C, but exhibited a growth defect at 37 °C. In contrast to the Dam adenine methyltransferase, a mutation in did not impair the functions of DNA repair or resistance to detergents. However, the Δ mutant exhibited a virulence defect in a mouse model of intragastric infection. The analysis indicated that the chromosomal region carrying the locus has been replaced in by a horizontally acquired region which potentially encodes another methyltransferase. YamA might thus be dispensable for growth and virulence because this species has acquired another gene fulfilling the same functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005736-0
2007-08-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2426.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005736-0&mimeType=html&fmt=ahah

References

  1. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C. & other authors ( 1999; ). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Barras, F. & Marinus, M. G. ( 1989; ). The great GATC: DNA methylation in E. coli. Trends Genet 5, 139–143.[CrossRef]
    [Google Scholar]
  4. Bujnicki, J. M. & Radlinska, M. ( 1999; ). Molecular phylogenetics of DNA 5mC-methyltransferases. Acta Microbiol Pol 48, 19–30.
    [Google Scholar]
  5. Chain, P. S., Carniel, E., Larimer, F. W., Lamerdin, J., Stoutland, P. O., Regala, W. M., Georgescu, A. M., Vergez, L. M., Land, M. L. & other authors ( 2004; ). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101, 13826–13831.[CrossRef]
    [Google Scholar]
  6. Conchas, R. F. & Carniel, E. ( 1990; ). A highly efficient electroporation system for transformation of Yersinia. Gene 87, 133–137.[CrossRef]
    [Google Scholar]
  7. Derbise, A., Lesic, B., Dacheux, D., Ghigo, J. M. & Carniel, E. ( 2003; ). A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38, 113–116.[CrossRef]
    [Google Scholar]
  8. Falker, S., Schmidt, M. A. & Heusipp, G. ( 2006; ). Altered Ca2+ regulation of Yop secretion in Yersinia enterocolitica after DNA adenine methyltransferase overproduction is mediated by Clp-dependent degradation of LcrG. J Bacteriol 188, 7072–7081.[CrossRef]
    [Google Scholar]
  9. Handa, N. & Kobayashi, I. ( 1999; ). Post-segregational killing by restriction modification gene complexes: observations of individual cell deaths. Biochimie 81, 931–938.[CrossRef]
    [Google Scholar]
  10. Handa, N., Ichige, A., Kusano, K. & Kobayashi, I. ( 2000; ). Cellular responses to post-segregational killing by restriction-modification genes. J Bacteriol 182, 2218–2229.[CrossRef]
    [Google Scholar]
  11. Handa, N., Nakayama, Y., Sadykov, M. & Kobayashi, I. ( 2001; ). Experimental genome evolution: large-scale genome rearrangements associated with resistance to replacement of a chromosomal restriction-modification gene complex. Mol Microbiol 40, 932–940.[CrossRef]
    [Google Scholar]
  12. Heithoff, D. M., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. ( 1999; ). An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967–970.[CrossRef]
    [Google Scholar]
  13. Heithoff, D. M., Enioutina, E. Y., Daynes, R. A., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. ( 2001; ). Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect Immun 69, 6725–6730.[CrossRef]
    [Google Scholar]
  14. Heitman, J. ( 1993; ). On the origins, structures and functions of restriction-modification enzymes. Genet Eng (N Y) 15, 57–108.
    [Google Scholar]
  15. Heusipp, G., Falker, S. & Alexander Schmidt, M. ( 2007; ). DNA adenine methylation and bacterial pathogenesis. Int J Med Microbiol 297, 1–7.
    [Google Scholar]
  16. Hinchliffe, S. J., Isherwood, K. E., Stabler, R. A., Prentice, M. B., Rakin, A., Nichols, R. A., Oyston, P. C., Hinds, J., Titball, R. W. & Wren, B. W. ( 2003; ). Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res 13, 2018–2029.[CrossRef]
    [Google Scholar]
  17. Ibanez, M., Alvarez, I., Rodriguez-Pena, J. M. & Rotger, R. ( 1997; ). A ColE1-type plasmid from Salmonella enteritidis encodes a DNA cytosine methyltransferase. Gene 196, 145–158.[CrossRef]
    [Google Scholar]
  18. Jeltsch, A. ( 2003; ). Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems?. Gene 317, 13–16.[CrossRef]
    [Google Scholar]
  19. Jeltsch, A. & Pingoud, A. ( 1996; ). Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems. J Mol Evol 42, 91–96.[CrossRef]
    [Google Scholar]
  20. Jeltsch, A., Kroger, M. & Pingoud, A. ( 1995; ). Evidence for an evolutionary relationship among type-II restriction endonucleases. Gene 160, 7–16.[CrossRef]
    [Google Scholar]
  21. Julio, S. M., Heithoff, D. M., Provenzano, D., Klose, K. E., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. ( 2001; ). DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect Immun 69, 7610–7615.[CrossRef]
    [Google Scholar]
  22. Julio, S. M., Heithoff, D. M., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. ( 2002; ). DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE expression and secretion and host immune responses to infection. Infect Immun 70, 1006–1009.[CrossRef]
    [Google Scholar]
  23. Kessler, C. & Manta, V. ( 1990; ). Specificity of restriction endonucleases and DNA modification methyltransferases: a review (Edition 3). Gene 92, 1–248.[CrossRef]
    [Google Scholar]
  24. Kobayashi, I. ( 2001; ). Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29, 3742–3756.[CrossRef]
    [Google Scholar]
  25. Kong, H., Lin, L. F., Porter, N., Stickel, S., Byrd, D., Posfai, J. & Roberts, R. J. ( 2000; ). Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. Nucleic Acids Res 28, 3216–3223.[CrossRef]
    [Google Scholar]
  26. Kusano, K., Naito, T., Handa, N. & Kobayashi, I. ( 1995; ). Restriction-modification systems as genomic parasites in competition for specific sequences. Proc Natl Acad Sci U S A 92, 11095–11099.[CrossRef]
    [Google Scholar]
  27. Messer, W., Seufert, W., Schaefer, C., Gielow, A., Hartmann, H. & Wende, M. ( 1988; ). Functions of the DnaA protein of Escherichia coli in replication and transcription. Biochim Biophys Acta 951, 351–358.[CrossRef]
    [Google Scholar]
  28. Murray, N. E. ( 2002; ). 2001 Fred Griffith review lecture. Immigration control of DNA in bacteria: self versus non-self. Microbiology 148, 3–20.
    [Google Scholar]
  29. Naito, T., Kusano, K. & Kobayashi, I. ( 1995; ). Selfish behavior of restriction-modification systems. Science 267, 897–899.[CrossRef]
    [Google Scholar]
  30. Nobusato, A., Uchiyama, I. & Kobayashi, I. ( 2000a; ). Diversity of restriction-modification gene homologues in Helicobacter pylori. Gene 259, 89–98.[CrossRef]
    [Google Scholar]
  31. Nobusato, A., Uchiyama, I., Ohashi, S. & Kobayashi, I. ( 2000b; ). Insertion with long target duplication: a mechanism for gene mobility suggested from comparison of two related bacterial genomes. Gene 259, 99–108.[CrossRef]
    [Google Scholar]
  32. Noyer-Weidner, M. & Trautner, T. A. ( 1993; ). Methylation of DNA in prokaryotes. EXS 64, 39–108.
    [Google Scholar]
  33. Oshima, T., Wada, C., Kawagoe, Y., Ara, T., Maeda, M., Masuda, Y., Hiraga, S. & Mori, H. ( 2002; ). Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45, 673–695.[CrossRef]
    [Google Scholar]
  34. Ostendorf, T., Cherepanov, P., de Vries, J. & Wackernagel, W. ( 1999; ). Characterization of a dam mutant of Serratia marcescens and nucleotide sequence of the dam region. J Bacteriol 181, 3880–3885.
    [Google Scholar]
  35. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  36. Pouillot, F., Derbise, A., Kukkonen, M., Foulon, J., Korhonen, T. K. & Carniel, E. ( 2005; ). Evaluation of O-antigen inactivation on Pla activity and virulence of Yersinia pseudotuberculosis harbouring the pPla plasmid. Microbiology 151, 3759–3768.[CrossRef]
    [Google Scholar]
  37. Pucciarelli, M. G., Prieto, A. I., Casadesus, J. & Garcia-del Portillo, F. ( 2002; ). Envelope instability in DNA adenine methylase mutants of Salmonella enterica. Microbiology 148, 1171–1182.
    [Google Scholar]
  38. Reed, L. J. & Muench, H. ( 1935; ). A simple method of estimating fifty per cent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  39. Roberts, R. J. & Macelis, D. ( 1998; ). REBASE – restriction enzymes and methylases. Nucleic Acids Res 26, 338–350.[CrossRef]
    [Google Scholar]
  40. Robinson, V. L., Oyston, P. C. & Titball, R. W. ( 2005; ). A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiol Lett 252, 251–256.[CrossRef]
    [Google Scholar]
  41. Sistla, S. & Rao, D. N. ( 2004; ). S-Adenosyl-l-methionine-dependent restriction enzymes. Crit Rev Biochem Mol Biol 39, 1–19.
    [Google Scholar]
  42. Taylor, V. L., Titball, R. W. & Oyston, P. C. ( 2005; ). Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology 151, 1919–1926.[CrossRef]
    [Google Scholar]
  43. Tock, M. R. & Dryden, D. T. ( 2005; ). The biology of restriction and anti-restriction. Curr Opin Microbiol 8, 466–472.[CrossRef]
    [Google Scholar]
  44. Wion, D. & Casadesus, J. ( 2006; ). N 6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol 4, 183–192.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005736-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005736-0
Loading

Data & Media loading...

Supplements

Distribution of the three genes composing the system among a panel of 39 strains of of various geographical origins and serotypes. [ PDF] (11 kb) Primers used for PCR amplification. [ PDF] (51 kb) Alignment of the amino acid sequences of YamA of ( ) and of the M subunit of ( ). The first box (single continuous line) indicates a Type I methylase motif. The second box (dashed line) delineates the signature sequence of N6 adenine DNA methylases. The third box (double line) indicates an N6 DNA methylase motif. [ PDF] (43 kb)

PDF

Distribution of the three genes composing the system among a panel of 39 strains of of various geographical origins and serotypes. [ PDF] (11 kb) Primers used for PCR amplification. [ PDF] (51 kb) Alignment of the amino acid sequences of YamA of ( ) and of the M subunit of ( ). The first box (single continuous line) indicates a Type I methylase motif. The second box (dashed line) delineates the signature sequence of N6 adenine DNA methylases. The third box (double line) indicates an N6 DNA methylase motif. [ PDF] (43 kb)

PDF

Distribution of the three genes composing the system among a panel of 39 strains of of various geographical origins and serotypes. [ PDF] (11 kb) Primers used for PCR amplification. [ PDF] (51 kb) Alignment of the amino acid sequences of YamA of ( ) and of the M subunit of ( ). The first box (single continuous line) indicates a Type I methylase motif. The second box (dashed line) delineates the signature sequence of N6 adenine DNA methylases. The third box (double line) indicates an N6 DNA methylase motif. [ PDF] (43 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error