1887

Abstract

is a chromosomal ∼155 bp repeated element found uniquely and ubiquitously in the group of Gram-positive bacteria; it exhibits several features characteristic of mobile elements, including a variable distribution pattern between strains. Here, highly similar elements in non-conserved genomic loci are identified in a set of closely related and strains near the phylogenetic cluster. It is also shown that may be present on small RNA transcripts in the 100–400 bp size range. folding of at the RNA level indicated that transcripts may form a double-hairpin-like structure predicted to have high structural stability. A functional role of at the RNA level is supported by multiple cases of G–U base-pairing, and compensatory mutations maintaining structural stability of the RNA fold. folding at the DNA level produced similar predicted structures, with the potential to form a cruciform structure at open DNA complexes. The predicted structural stability was greater for elements showing high sequence identities to elements in non-conserved chromosomal loci in other strains, relative to other copies. mobility could thus be dependent on the formation of a stable DNA or RNA intermediate. Furthermore, elements potentially encoding structurally stable and less stable transcripts were phylogenetically intermixed, indicating that loss of mobility may have occurred multiple times during evolution. Repeated elements with similar features in other bacteria have been shown to provide functions such as mRNA stabilization, transcription termination and/or promoter function. Similarly, may constitute a mobile element which occasionally gains a function when it enters an appropriate chromosomal locus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005504-0
2007-11-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3894.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005504-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Bachellier S., Clement J. M., Hofnung M.. 1999; Short palindromic repetitive DNA elements in enterobacteria: a survey. Res Microbiol150:627–639
    [Google Scholar]
  3. Buisine N., Tang C. M., Chalmers R.. 2002; Transposon-like Correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS Lett522:52–58
    [Google Scholar]
  4. Bureau T. E., Wessler S. R.. 1994; Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci U S A91:1411–1415
    [Google Scholar]
  5. Castresana J.. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol17:540–552
    [Google Scholar]
  6. Correia F. F., Inouye S., Inouye M.. 1988; A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J Biol Chem263:12194–12198
    [Google Scholar]
  7. Drobniewski F. A.. 1993; Bacillus cereus and related species. Clin Microbiol Rev6:324–338
    [Google Scholar]
  8. Galtier N., Gouy M., Gautier C.. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci12:543–548
    [Google Scholar]
  9. Griffiths-Jones S., Bateman A., Marshall M., Khanna A., Eddy S. R.. 2003; Rfam: an RNA family database. Nucleic Acids Res31:439–441
    [Google Scholar]
  10. Griffiths-Jones S., Moxon S., Marshall M., Khanna A., Eddy S. R., Bateman A.. 2005; Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res33:D121–D124
    [Google Scholar]
  11. Han C. S., Xie G., Challacombe J. F., Altherr M. R., Bhotika S. S., Brown N., Bruce D., Campbell C. S., Campbell M. L.. other authors 2006; Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol188:3382–3390
    [Google Scholar]
  12. Helgason E., Caugant D. A., Olsen I., Kolstø A. B.. 2000a; Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol38:1615–1622
    [Google Scholar]
  13. Helgason E., Økstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A. B.. 2000b; Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol66:2627–2630
    [Google Scholar]
  14. Helgason E., Tourasse N. J., Meisal R., Caugant D. A., Kolstø A. B.. 2004; Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol70:191–201
    [Google Scholar]
  15. Hernandez E., Ramisse F., Ducoureau J. P., Cruel T., Cavallo J. D.. 1998; Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol36:2138–2139
    [Google Scholar]
  16. Herron W. M.. 1930; Rancidity in Cheddar cheese Master's Thesis, Queen's University; Kingston, Ontario, Canada:
  17. Hofnung M., Shapiro J. A.. 1999; Introduction – special issue on repetitive DNA sequences in microbes. Res Microbiol150:577–578
    [Google Scholar]
  18. Hohl M., Kurtz S., Ohlebusch E.. 2002; Efficient multiple genome alignment. Bioinformatics18:Suppl 1S312–S320
    [Google Scholar]
  19. Huelsenbeck J. P., Ronquist F.. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics17:754–755
    [Google Scholar]
  20. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N.. other authors 2003; Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature423:87–91
    [Google Scholar]
  21. Izsvak Z., Ivics Z., Shimoda N., Mohn D., Okamoto H., Hackett P. B.. 1999; Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J Mol Evol48:13–21
    [Google Scholar]
  22. Jernigan J. A., Stephens D. S., Ashford D. A., Omenaca C., Topiel M. S., Galbraith M., Tapper M., Fisk T. L., Zaki S.. other authors 2001; Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis7:933–944
    [Google Scholar]
  23. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120
    [Google Scholar]
  24. Kiss T.. 2002; Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell109:145–148
    [Google Scholar]
  25. Kiss A. M., Jady B. E., Bertrand E., Kiss T.. 2004; Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol24:5797–5807
    [Google Scholar]
  26. Knutsen E., Johnsborg O., Quentin Y., Claverys J. P., Håvarstein L. S.. 2006; BOX elements modulate gene expression in Streptococcus pneumoniae: impact on the fine-tuning of competence development. J Bacteriol188:8307–8312
    [Google Scholar]
  27. Kozik A., Kochetkova E., Michelmore R.. 2002; GenomePixelizer – a visualization program for comparative genomics within and between species. Bioinformatics18:335–336
    [Google Scholar]
  28. Kumar S., Tamura K., Jakobsen I. B., Nei M.. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics17:1244–1245
    [Google Scholar]
  29. Lombard V., Camon E. B., Parkinson H. E., Hingamp P., Stoesser G., Redaschi N.. 2002; EMBL-Align: a new public nucleotide and amino acid multiple sequence alignment database. Bioinformatics18:763–764
    [Google Scholar]
  30. Martin B., Humbert O., Camara M., Guenzi E., Walker J., Mitchell T., Andrew P., Prudhomme M., Alloing G.. other authors 1992; A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res20:3479–3483
    [Google Scholar]
  31. Mathews D. H., Sabina J., Zuker M., Turner D. H.. 1999; Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol288:911–940
    [Google Scholar]
  32. Mazzone M., De Gregorio E., Lavitola A., Pagliarulo C., Alifano P., Di Nocera P. P.. 2001; Whole-genome organization and functional properties of miniature DNA insertion sequences conserved in pathogenic Neisseriae. Gene278:211–222
    [Google Scholar]
  33. Oggioni M. R., Claverys J. P.. 1999; Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in Streptococcus pneumoniae. Microbiology145:2647–2653
    [Google Scholar]
  34. Økstad O. A., Hegna I., Lindbäck T., Rishovd A. L., Kolstø A. B.. 1999; Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology145:621–631
    [Google Scholar]
  35. Økstad O. A., Tourasse N. J., Stabell F. B., Sundfaer C. K., Egge-Jacobsen W., Risøen P. A., Read T. D., Kolstø A. B.. 2004; The bcr1 DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics. J Bacteriol186:7714–7725
    [Google Scholar]
  36. Page R. D.. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  37. Rasko D. A., Ravel J., Økstad O. A., Helgason E., Cer R. Z., Jiang L., Shores K. A., Fouts D. E., Tourasse N. J.. other authors 2004; The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res32:977–988
    [Google Scholar]
  38. Rasko D. A., Altherr M. R., Han C. S., Ravel J.. 2005; Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev29:303–329
    [Google Scholar]
  39. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A.. other authors 2003; The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature423:81–86
    [Google Scholar]
  40. Reyes-Ramirez A., Ibarra J. E.. 2005; Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Appl Environ Microbiol71:1346–1355
    [Google Scholar]
  41. Ronquist F., Huelsenbeck J. P.. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19:1572–1574
    [Google Scholar]
  42. Rozen S., Skaletsky H.. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol132:365–386
    [Google Scholar]
  43. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  44. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., Dean D. H.. 1998; Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev62:775–806
    [Google Scholar]
  45. Sonnhammer E. L., Durbin R.. 1994; A workbench for large-scale sequence homology analysis. Comput Appl Biosci10:301–307
    [Google Scholar]
  46. Stern M. J., Ames G. F., Smith N. H., Robinson E. C., Higgins C. F.. 1984; Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell37:1015–1026
    [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  48. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  49. Tourasse N. J., Helgason E., Økstad O. A., Hegna I. K., Kolstø A. B.. 2006; The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol101:579–593
    [Google Scholar]
  50. Versalovic J., Lupski J. R.. 1998; Interspersed repetitive sequences in bacterial genomes. In Bacterial Genomes—Physical Structure and Analysis pp38–48 Edited by de Bruijn F. J., Lupski J. R., Weinstock G. M. New York: Chapman & Hall;
    [Google Scholar]
  51. Wessler S. R., Bureau T. E., White S. E.. 1995; LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev5:814–821
    [Google Scholar]
  52. Zuker M.. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005504-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005504-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error