1887

Abstract

Four independent nonsense mutations were engineered into the chromosomal gene, and reversion rates back to LacZ phenotypes were determined. The mutation potential of bases within putative DNA secondary structures formed during transcription was predicted by a sliding-window analysis that simulates successive folding of the ssDNA creating these structures. The relative base mutabilities predicted by the computer program correlated with experimentally determined reversion rates in three of the four mutants analysed. The nucleotide changes in revertants at one nonsense codon site consisted of a triple mutation, presumed to occur by a templated repair mechanism. Additionally, the effect of supercoiling on mutation was investigated and, in general, reversion rates increased with higher levels of negative supercoiling. Evidence indicates that predicted secondary structures are in fact formed and that directed mutation in response to starvation stress is dependent upon the exposure of particular bases, the stability of the structures in which these bases are unpaired and the level of DNA supercoiling within the cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005470-0
2007-07-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2180.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005470-0&mimeType=html&fmt=ahah

References

  1. Bachl J., Carlson C., Gray-Schopfer V., Dessing M., Olsson C.. 2001; Increased transcription levels induce higher mutation rates in a hypermutating cell line. J Immunol166:5051–5057[CrossRef]
    [Google Scholar]
  2. Balke V. L., Gralla J. D.. 1987; Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J Bacteriol169:4499–4506
    [Google Scholar]
  3. Brock R. D.. 1971; Differential mutation of the β -galactosidase gene of Escherichia coli. Mutat Res11:181–186
    [Google Scholar]
  4. Cairns J., Foster P. L.. 1991; Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics128:695–701
    [Google Scholar]
  5. Colleaux L., d'Auriol L., Betermier M., Cottarel G., Jacquier A., Galibert F., Dujon B.. 1986; Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell44:521–533[CrossRef]
    [Google Scholar]
  6. Datta A., Jinks-Robertson S.. 1995; Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science268:1616–1619[CrossRef]
    [Google Scholar]
  7. Dayn A., Malkhosyan S., Mirkin S. M.. 1992; Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res20:5991–5997[CrossRef]
    [Google Scholar]
  8. Dorman C. J., Barr G. C., Bhriain N. N., Higgins C. F.. 1988; DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol170:2816–2826
    [Google Scholar]
  9. Fukita Y., Jacobs H., Rajewsky K.. 1998; Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity9:105–114[CrossRef]
    [Google Scholar]
  10. Goldstein E., Drlica K.. 1984; Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proc Natl Acad Sci U S A81:4046–4050[CrossRef]
    [Google Scholar]
  11. Herman R. K., Dworkin N. B.. 1971; Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J Bacteriol106:543–550
    [Google Scholar]
  12. Herring C. D., Glasner J. D., Blattner F. R.. 2003; Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene311:153–163[CrossRef]
    [Google Scholar]
  13. Higgins C. F., Dorman C. J., Stirling D. A., Waddell L., Booth I. R., May G., Bremer E.. 1988; A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell52:569–584[CrossRef]
    [Google Scholar]
  14. Karem K., Foster J. W.. 1993; The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol Microbiol10:75–86[CrossRef]
    [Google Scholar]
  15. Krasilnikov A. S., Podtelezhnikov A., Vologodskii A., Mirkin S. M.. 1999; Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol292:1149–1160[CrossRef]
    [Google Scholar]
  16. Lindahl T.. 1993; Instability and decay of the primary structure of DNA. Nature362:709–715[CrossRef]
    [Google Scholar]
  17. Liu L. F., Wang J. C.. 1987; Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A84:7024–7027[CrossRef]
    [Google Scholar]
  18. Luria S. E., Delbrück M.. 1943; Mutations of bacteria from virus sensitivity to virus resistance. Genetics28:491–511
    [Google Scholar]
  19. Markham N. R., Zuker M.. 2005; DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res33:W577–W581[CrossRef]
    [Google Scholar]
  20. Miller W. G., Simons R. W.. 1993; Chromosomal supercoiling in Escherichia coli. Mol Microbiol10:675–684[CrossRef]
    [Google Scholar]
  21. Mojica F. J., Charbonnier F., Juez G., Rodriguez-Valera F., Forterre P.. 1994; Effects of salt and temperature on plasmid topology in the halophilic archaeon Haloferax volcanii. J Bacteriol176:4966–4973
    [Google Scholar]
  22. Opel M. L., Hatfield G. W.. 2001; DNA supercoiling-dependent transcriptional coupling between the divergently transcribed promoters of the ilvYC operon of Escherichia coli is proportional to promoter strengths and transcript lengths. Mol Microbiol39:191–198[CrossRef]
    [Google Scholar]
  23. Pearson C. E., Zorbas H., Price G. B., Zannis-Hadjopoulos M.. 1996; Inverted repeats, stem–loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem63:1–22
    [Google Scholar]
  24. Postow L., Hardy C. D., Arsuaga J., Cozzarelli N. R.. 2004; Topological domain structure of the Escherichia coli chromosome. Genes Dev18:1766–1779[CrossRef]
    [Google Scholar]
  25. Pruss G. J., Drlica K.. 1986; Topoisomerase I mutants: the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci U S A83:8952–8956[CrossRef]
    [Google Scholar]
  26. Pruss G. J., Manes S. H., Drlica K.. 1982; Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell31:35–42[CrossRef]
    [Google Scholar]
  27. Reimers J. M., Schmidt K. H., Longacre A., Reschke D. K., Wright B. E.. 2004; Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology150:1457–1466[CrossRef]
    [Google Scholar]
  28. Ripley L. S.. 1982; Model for the participation of quasi-palindromic DNA sequences in frameshift mutation. Proc Natl Acad Sci U S A79:4128–4132[CrossRef]
    [Google Scholar]
  29. Ripley L. S., Glickman B. W.. 1983; Unique self-complementarity of palindromic sequences provides DNA structural intermediates for mutation. Cold Spring Harb Symp Quant Biol47:851–861[CrossRef]
    [Google Scholar]
  30. Rudner R., Murray A., Huda N.. 1999; Is there a link between mutation rates and the stringent response in Bacillus subtilis?. Ann N Y Acad Sci870:418–422[CrossRef]
    [Google Scholar]
  31. Schmidt K. H., Reimers J. M., Wright B. E.. 2006; The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol Microbiol60:1251–1261[CrossRef]
    [Google Scholar]
  32. Sinden R. R., Pettijohn D. E.. 1981; Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. Proc Natl Acad Sci U S A78:224–228[CrossRef]
    [Google Scholar]
  33. Singer B., Kusmierek J. T.. 1982; Chemical mutagenesis. Annu Rev Biochem51:655–693[CrossRef]
    [Google Scholar]
  34. Theissen G., Pardon B., Wagner R.. 1990; A quantitative assessment for transcriptional pausing of DNA-dependent RNA polymerases in vitro. Anal Biochem189:254–261[CrossRef]
    [Google Scholar]
  35. Tyagi R., Lai R., Duggleby R. G.. 2004; A new approach to ‘megaprimer’ polymerase chain reaction mutagenesis without an intermediate gel purification step. BMC Biotechnol4:2[CrossRef]
    [Google Scholar]
  36. Viswanathan M., Lacirignola J. J., Hurley R. L., Lovett S. T.. 2000; A novel mutational hotspot in a natural quasipalindrome in Escherichia coli. J Mol Biol302:553–564[CrossRef]
    [Google Scholar]
  37. Weiss U., Wilson J. H.. 1987; Repair of single-stranded loops in heteroduplex DNA transfected into mammalian cells. Proc Natl Acad Sci U S A84:1619–1623[CrossRef]
    [Google Scholar]
  38. Wright B. E.. 1996; The effect of the stringent response on mutation rates in Escherichia coli K-12. Mol Microbiol19:213–219[CrossRef]
    [Google Scholar]
  39. Wright B. E.. 2000; A biochemical mechanism for nonrandom mutations and evolution. J Bacteriol182:2993–3001[CrossRef]
    [Google Scholar]
  40. Wright B. E.. 2004; Stress-directed adaptive mutations and evolution. Mol Microbiol52:643–650[CrossRef]
    [Google Scholar]
  41. Wright B. E., Longacre A., Reimers J. M.. 1999; Hypermutation in derepressed operons of Escherichia coli K-12. Proc Natl Acad Sci U S A96:5089–5094[CrossRef]
    [Google Scholar]
  42. Wright B. E., Reimers J. M., Schmidt K. H., Reschke D. K.. 2002; Hypermutable bases in the p53 cancer gene are at vulnerable positions in DNA secondary structures. Cancer Res62:5641–5644
    [Google Scholar]
  43. Wright B. E., Reschke D. K., Schmidt K. H., Reimers J. M., Knight W.. 2003; Predicting mutation frequencies in stem–loop structures of derepressed genes: implications for evolution. Mol Microbiol48:429–441[CrossRef]
    [Google Scholar]
  44. Wright B. E., Schmidt K. H., Minnick M. F.. 2004; Mechanisms by which transcription can regulate somatic hypermutation. Genes Immun5:176–182[CrossRef]
    [Google Scholar]
  45. Zheng G. X., Kochel T., Hoepfner R. W., Timmons S. E., Sinden R. R.. 1991; Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells. J Mol Biol221:107–122[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005470-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005470-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error