1887

Abstract

Four independent nonsense mutations were engineered into the chromosomal gene, and reversion rates back to LacZ phenotypes were determined. The mutation potential of bases within putative DNA secondary structures formed during transcription was predicted by a sliding-window analysis that simulates successive folding of the ssDNA creating these structures. The relative base mutabilities predicted by the computer program correlated with experimentally determined reversion rates in three of the four mutants analysed. The nucleotide changes in revertants at one nonsense codon site consisted of a triple mutation, presumed to occur by a templated repair mechanism. Additionally, the effect of supercoiling on mutation was investigated and, in general, reversion rates increased with higher levels of negative supercoiling. Evidence indicates that predicted secondary structures are in fact formed and that directed mutation in response to starvation stress is dependent upon the exposure of particular bases, the stability of the structures in which these bases are unpaired and the level of DNA supercoiling within the cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005470-0
2007-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2180.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005470-0&mimeType=html&fmt=ahah

References

  1. Bachl J., Carlson C., Gray-Schopfer V., Dessing M., Olsson C. 2001; Increased transcription levels induce higher mutation rates in a hypermutating cell line. J Immunol 166:5051–5057 [CrossRef]
    [Google Scholar]
  2. Balke V. L., Gralla J. D. 1987; Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J Bacteriol 169:4499–4506
    [Google Scholar]
  3. Brock R. D. 1971; Differential mutation of the β -galactosidase gene of Escherichia coli. Mutat Res 11:181–186
    [Google Scholar]
  4. Cairns J., Foster P. L. 1991; Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128:695–701
    [Google Scholar]
  5. Colleaux L., d'Auriol L., Betermier M., Cottarel G., Jacquier A., Galibert F., Dujon B. 1986; Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44:521–533 [CrossRef]
    [Google Scholar]
  6. Datta A., Jinks-Robertson S. 1995; Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268:1616–1619 [CrossRef]
    [Google Scholar]
  7. Dayn A., Malkhosyan S., Mirkin S. M. 1992; Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res 20:5991–5997 [CrossRef]
    [Google Scholar]
  8. Dorman C. J., Barr G. C., Bhriain N. N., Higgins C. F. 1988; DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol 170:2816–2826
    [Google Scholar]
  9. Fukita Y., Jacobs H., Rajewsky K. 1998; Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 9:105–114 [CrossRef]
    [Google Scholar]
  10. Goldstein E., Drlica K. 1984; Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proc Natl Acad Sci U S A 81:4046–4050 [CrossRef]
    [Google Scholar]
  11. Herman R. K., Dworkin N. B. 1971; Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J Bacteriol 106:543–550
    [Google Scholar]
  12. Herring C. D., Glasner J. D., Blattner F. R. 2003; Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311:153–163 [CrossRef]
    [Google Scholar]
  13. Higgins C. F., Dorman C. J., Stirling D. A., Waddell L., Booth I. R., May G., Bremer E. 1988; A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52:569–584 [CrossRef]
    [Google Scholar]
  14. Karem K., Foster J. W. 1993; The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol Microbiol 10:75–86 [CrossRef]
    [Google Scholar]
  15. Krasilnikov A. S., Podtelezhnikov A., Vologodskii A., Mirkin S. M. 1999; Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol 292:1149–1160 [CrossRef]
    [Google Scholar]
  16. Lindahl T. 1993; Instability and decay of the primary structure of DNA. Nature 362:709–715 [CrossRef]
    [Google Scholar]
  17. Liu L. F., Wang J. C. 1987; Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84:7024–7027 [CrossRef]
    [Google Scholar]
  18. Luria S. E., Delbrück M. 1943; Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511
    [Google Scholar]
  19. Markham N. R., Zuker M. 2005; DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581 [CrossRef]
    [Google Scholar]
  20. Miller W. G., Simons R. W. 1993; Chromosomal supercoiling in Escherichia coli. Mol Microbiol 10:675–684 [CrossRef]
    [Google Scholar]
  21. Mojica F. J., Charbonnier F., Juez G., Rodriguez-Valera F., Forterre P. 1994; Effects of salt and temperature on plasmid topology in the halophilic archaeon Haloferax volcanii. J Bacteriol 176:4966–4973
    [Google Scholar]
  22. Opel M. L., Hatfield G. W. 2001; DNA supercoiling-dependent transcriptional coupling between the divergently transcribed promoters of the ilvYC operon of Escherichia coli is proportional to promoter strengths and transcript lengths. Mol Microbiol 39:191–198 [CrossRef]
    [Google Scholar]
  23. Pearson C. E., Zorbas H., Price G. B., Zannis-Hadjopoulos M. 1996; Inverted repeats, stem–loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 63:1–22
    [Google Scholar]
  24. Postow L., Hardy C. D., Arsuaga J., Cozzarelli N. R. 2004; Topological domain structure of the Escherichia coli chromosome. Genes Dev 18:1766–1779 [CrossRef]
    [Google Scholar]
  25. Pruss G. J., Drlica K. 1986; Topoisomerase I mutants: the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci U S A 83:8952–8956 [CrossRef]
    [Google Scholar]
  26. Pruss G. J., Manes S. H., Drlica K. 1982; Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31:35–42 [CrossRef]
    [Google Scholar]
  27. Reimers J. M., Schmidt K. H., Longacre A., Reschke D. K., Wright B. E. 2004; Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology 150:1457–1466 [CrossRef]
    [Google Scholar]
  28. Ripley L. S. 1982; Model for the participation of quasi-palindromic DNA sequences in frameshift mutation. Proc Natl Acad Sci U S A 79:4128–4132 [CrossRef]
    [Google Scholar]
  29. Ripley L. S., Glickman B. W. 1983; Unique self-complementarity of palindromic sequences provides DNA structural intermediates for mutation. Cold Spring Harb Symp Quant Biol 47:851–861 [CrossRef]
    [Google Scholar]
  30. Rudner R., Murray A., Huda N. 1999; Is there a link between mutation rates and the stringent response in Bacillus subtilis?. Ann N Y Acad Sci 870:418–422 [CrossRef]
    [Google Scholar]
  31. Schmidt K. H., Reimers J. M., Wright B. E. 2006; The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol Microbiol 60:1251–1261 [CrossRef]
    [Google Scholar]
  32. Sinden R. R., Pettijohn D. E. 1981; Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. Proc Natl Acad Sci U S A 78:224–228 [CrossRef]
    [Google Scholar]
  33. Singer B., Kusmierek J. T. 1982; Chemical mutagenesis. Annu Rev Biochem 51:655–693 [CrossRef]
    [Google Scholar]
  34. Theissen G., Pardon B., Wagner R. 1990; A quantitative assessment for transcriptional pausing of DNA-dependent RNA polymerases in vitro. Anal Biochem 189:254–261 [CrossRef]
    [Google Scholar]
  35. Tyagi R., Lai R., Duggleby R. G. 2004; A new approach to ‘megaprimer’ polymerase chain reaction mutagenesis without an intermediate gel purification step. BMC Biotechnol 4:2 [CrossRef]
    [Google Scholar]
  36. Viswanathan M., Lacirignola J. J., Hurley R. L., Lovett S. T. 2000; A novel mutational hotspot in a natural quasipalindrome in Escherichia coli. J Mol Biol 302:553–564 [CrossRef]
    [Google Scholar]
  37. Weiss U., Wilson J. H. 1987; Repair of single-stranded loops in heteroduplex DNA transfected into mammalian cells. Proc Natl Acad Sci U S A 84:1619–1623 [CrossRef]
    [Google Scholar]
  38. Wright B. E. 1996; The effect of the stringent response on mutation rates in Escherichia coli K-12. Mol Microbiol 19:213–219 [CrossRef]
    [Google Scholar]
  39. Wright B. E. 2000; A biochemical mechanism for nonrandom mutations and evolution. J Bacteriol 182:2993–3001 [CrossRef]
    [Google Scholar]
  40. Wright B. E. 2004; Stress-directed adaptive mutations and evolution. Mol Microbiol 52:643–650 [CrossRef]
    [Google Scholar]
  41. Wright B. E., Longacre A., Reimers J. M. 1999; Hypermutation in derepressed operons of Escherichia coli K-12. Proc Natl Acad Sci U S A 96:5089–5094 [CrossRef]
    [Google Scholar]
  42. Wright B. E., Reimers J. M., Schmidt K. H., Reschke D. K. 2002; Hypermutable bases in the p53 cancer gene are at vulnerable positions in DNA secondary structures. Cancer Res 62:5641–5644
    [Google Scholar]
  43. Wright B. E., Reschke D. K., Schmidt K. H., Reimers J. M., Knight W. 2003; Predicting mutation frequencies in stem–loop structures of derepressed genes: implications for evolution. Mol Microbiol 48:429–441 [CrossRef]
    [Google Scholar]
  44. Wright B. E., Schmidt K. H., Minnick M. F. 2004; Mechanisms by which transcription can regulate somatic hypermutation. Genes Immun 5:176–182 [CrossRef]
    [Google Scholar]
  45. Zheng G. X., Kochel T., Hoepfner R. W., Timmons S. E., Sinden R. R. 1991; Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells. J Mol Biol 221:107–122 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005470-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005470-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error