1887

Abstract

Carbon-energy source starvation is a commonly encountered stress that can influence the epidemiology and virulence of serovars. responds to C-starvation by eliciting the starvation-stress response (SSR), which allows for long-term C-starvation survival and cross-resistance to other stresses. The locus was identified as a C-starvation-inducible, -dependent locus required for a maximal SSR. We report here that the locus is an operon composed of the (putative transport protein) and (penicillin-binding protein-7/8) genes. transcription is initiated from a –dependent C-starvation-inducible promoter upstream of . Another ( -independent) promoter, upstream of , drives lower constitutive transcription, primarily during exponential phase. C-starvation-inducible expression was required for development of the SSR in 5 h, but not 24 h, C-starved cells; was dispensable for the SSR. Furthermore, the operon is induced within MDCK epithelial cells, but was not essential for oral virulence in BALB/c mice. Thus, PBP 7 is required for physiological changes, occurring within the first few hours of C-starvation, essential for the development of the SSR. Lack of PBP 7, however, can be compensated for by further physiological changes developed in 24 h C-starved cells. This supports the dynamic overlapping and distinct nature of resistance pathways within the SSR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005199-0
2007-07-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2148.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005199-0&mimeType=html&fmt=ahah

References

  1. Bang, I.-S., Frye, J. G., McClelland, M., Velayudhan, J. & Fang, F. C. ( 2005; ). Alternative sigma factor interactions in Salmonella: σ E and σ H promote antioxidant defenses by enhancing σ S levels. Mol Microbiol 56, 811–823.[CrossRef]
    [Google Scholar]
  2. Bébien, M., Kirsch, J., Méjean, V. & Verméglio, A. ( 2002; ). Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Microbiology 148, 3865–3872.
    [Google Scholar]
  3. Brown, M. R. W. & Williams, P. ( 1985; ). The influence of environment on envelope properties affecting survival of bacteria in infections. Annu Rev Microbiol 39, 527–556.[CrossRef]
    [Google Scholar]
  4. Bullas, L. R. & Ryu, J. I. ( 1983; ). Salmonella typhimurium LT2 strains which are r m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 156, 471–474.
    [Google Scholar]
  5. Chan, R. K., Botstein, D., Watanabe, T. & Ogata, Y. ( 1972; ). Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high transducing lysate. Virology 50, 883–898.[CrossRef]
    [Google Scholar]
  6. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  7. Davis, R. W., Botstein, D. & Roth, J. R. ( 1980; ). Advanced Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  8. Denome, S. A., Elf, P. K., Henderson, T. A., Nelson, D. E. & Young, K. D. ( 1999; ). Escherichia coli mutants lacking all possible combinations of eight penicillin-binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol 181, 3981–3993.
    [Google Scholar]
  9. Dougherty, T. J. & Pucci, M. J. ( 1994; ). Penicillin-binding proteins are regulated by rpoS during transitions in growth states of Escherichia coli. Antimicrob Agents Chemother 38, 205–210.[CrossRef]
    [Google Scholar]
  10. Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J. & Guiney, D. G. ( 1992; ). The alternative σ factor KatF (RpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 89, 11978–11982.[CrossRef]
    [Google Scholar]
  11. Finlay, B. B. & Falkow, S. ( 1989; ). Salmonella as an intracellular parasite. Mol Microbiol 3, 1833–1841.[CrossRef]
    [Google Scholar]
  12. Foster, J. W. & Spector, M. P. ( 1995; ). How Salmonella survive against the odds. Annu Rev Microbiol 49, 145–174.[CrossRef]
    [Google Scholar]
  13. Franchini, A. G. & Egli, T. ( 2006; ). Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152, 2111–2127.[CrossRef]
    [Google Scholar]
  14. Garcia-del Portillo, F., Foster, J. W., Maguire, M. E. & Finlay, B. B. ( 1992; ). Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol Microbiol 6, 3289–3297.[CrossRef]
    [Google Scholar]
  15. Goffin, C. & Ghuysen, J. M. ( 2002; ). Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 66, 702–738.[CrossRef]
    [Google Scholar]
  16. Heidrich, C., Ursinus, A., Berger, J., Schwartz, H. & Höltje, J. V. ( 2002; ). Effects of multiple deletions of murein hydrolases on viability, septum cleavage and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol 184, 6093–6099.[CrossRef]
    [Google Scholar]
  17. Henderson, T. A., Dombrosky, P. M. & Young, K. D. ( 1994; ). Artifactual processing of penicillin-binding protein 7 and 1b by the OmpT protease of Escherichia coli. J Bacteriol 176, 256–259.
    [Google Scholar]
  18. Henderson, T. A., Templin, M. & Young, K. D. ( 1995; ). Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. J Bacteriol 177, 2074–2079.
    [Google Scholar]
  19. Hoiseth, S. K. & Stocker, B. A. D. ( 1981; ). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239.[CrossRef]
    [Google Scholar]
  20. Humphreys, S., Stevenson, A., Bacon, A., Weinhardt, A. B. & Roberts, M. ( 1999; ). The alternative sigma factor, σ E, is critically important for the virulence of Salmonella typhimurium. Infect Immun 67, 1560–1568.
    [Google Scholar]
  21. Jenkins, D. E., Schultz, J. E. & Matin, A. ( 1988; ). Starvation-induced cross-protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 170, 3910–3914.
    [Google Scholar]
  22. Kazmierczak, M. J., Weidman, M. & Boor, K. J. ( 2005; ). Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69, 527–543.[CrossRef]
    [Google Scholar]
  23. Kenyon, W. J., Sayers, D. G., Humphreys, S., Roberts, M. & Spector, M. P. ( 2002; ). The starvation-stress response of Salmonella enterica serovar Typhimurium requires σ E, but not CpxR-regulated, extracytoplasmic functions. Microbiology 148, 113–122.
    [Google Scholar]
  24. Koch, A. L. ( 1971; ). The adaptive response of Escherichia coli to a feast and famine existence. Adv Microb Physiol 6, 147–217.
    [Google Scholar]
  25. Kormanec, J. ( 2001; ). Analyzing the developmental expression of sigma factors with S1-nuclease mapping. Methods Mol Biol 160, 481–494.
    [Google Scholar]
  26. Lacour, S., Kolb, A. & Landini, P. ( 2003; ). Nucleotides from −16 to −12 determine specific promoter recognition by bacterial sigma S-RNA polymerase. J Biol Chem 278, 37160–37168.[CrossRef]
    [Google Scholar]
  27. Loewen, P. C. & Hengge-Aronis, R. ( 1994; ). The role of the sigma factor σ S (KatF) in bacterial global regulation. Annu Rev Microbiol 48, 53–80.[CrossRef]
    [Google Scholar]
  28. Mahan, M. J., Tobias, J. W., Slauch, J. M., Hanna, P. C., Collier, J. R. & Mekalanos, J. J. ( 1995; ). Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A 92, 669–673.[CrossRef]
    [Google Scholar]
  29. Maloy, S. R. ( 1989; ). Experimental Techniques in Bacterial Genetics. Boston, MA: Jones & Bartlett.
  30. Maxam, A. M. & Gilbert, W. ( 1980; ). Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65, 499–560.
    [Google Scholar]
  31. McCann, M. P., Fraley, C. D. & Matin, A. ( 1991; ). The putative σ factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173, 4188–4194.
    [Google Scholar]
  32. McLeod, G. I. & Spector, M. P. ( 1996; ). Starvation- and stationary-phase-induced resistance to the antimicrobial peptide polymyxin B in Salmonella typhimurium is RpoS (σ S)-independent and occurs through both phoP-dependent and -independent pathways. J Bacteriol 178, 3683–3688.
    [Google Scholar]
  33. Meberg, B. M., Paulson, A. L., Priyadarshini, R. & Young, K. D. ( 2004; ). Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. J Bacteriol 186, 8326–8336.[CrossRef]
    [Google Scholar]
  34. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  35. Moat, A. G., Foster, J. W. & Spector, M. P. ( 2002; ). Microbial Physiology, 4th edn. New York, NY: John Wiley & Sons.
  36. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. ( 1974; ). Culture medium for enterobacteria. J Bacteriol 119, 736–747.
    [Google Scholar]
  37. O'Neal, C. R., Gabriel, W. M., Turk, A. K., Libby, S. J., Fang, F. C. & Spector, M. P. ( 1994; ). RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium. J Bacteriol 176, 4610–4616.
    [Google Scholar]
  38. Parks, C. L., Chang, L. S. & Shenk, T. ( 1991; ). A polymerase chain reaction mediated by a single primer: cloning of genomic sequences adjacent to a serotonin receptor protein coding region. Nucleic Acids Res 19, 7155–7160.[CrossRef]
    [Google Scholar]
  39. Priyadarshini, R., Popham, D. L. & Young, K. D. ( 2006; ). Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J Bacteriol 188, 5345–5355.[CrossRef]
    [Google Scholar]
  40. Rezuchova, B., Miticka, H., Homerova, D., Roberts, M. & Kormanec, J. ( 2003; ). New members of the Escherichia coli σ E regulon identified by a two-plasmid system. FEMS Microbiol Lett 225, 1–7.[CrossRef]
    [Google Scholar]
  41. Romeis, T. & Höltje, J. V. ( 1994; ). Penicillin-binding protein 7/8 of Escherichia coli is a dd-endopeptidase. Eur J Biochem 224, 597–604.[CrossRef]
    [Google Scholar]
  42. Rosenthal, A., Coutelle, O. & Craxton, M. ( 1993; ). Large-scale production of DNA sequencing template by microtitre format PCR. Nucleic Acids Res 21, 173–174.[CrossRef]
    [Google Scholar]
  43. Rowley, G., Spector, M., Kormanec, J. & Roberts, M. ( 2006; ). Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4, 383–394.[CrossRef]
    [Google Scholar]
  44. Rozen, Y. & Belkin, S. ( 2001; ). Survival of enteric bacteria in seawater. FEMS Microbiol Rev 25, 513–529.[CrossRef]
    [Google Scholar]
  45. Seymour, R. L., Mishra, P. V., Khan, M. A. & Spector, M. P. ( 1996; ). Essential roles of core starvation-stress response loci in carbon-starvation-inducible cross-resistance and hydrogen peroxide-inducible adaptive resistance to oxidative challenge in Salmonella typhimurium. Mol Microbiol 20, 497–505.[CrossRef]
    [Google Scholar]
  46. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96.[CrossRef]
    [Google Scholar]
  47. Skovierova, H., Rowley, G., Rezuchova, B., Homerova, D., Lewis, C., Roberts, M. & Kormanec, J. ( 2006; ). Identification of the σ E regulon of Salmonella enterica serovar Typhimurium. Microbiology 152, 1347–1359.[CrossRef]
    [Google Scholar]
  48. Spector, M. P. ( 1990; ). Gene expression in response to multiple nutrient-starvation conditions in Salmonella typhimurium. FEMS Microbiol Ecol 74, 175–184.[CrossRef]
    [Google Scholar]
  49. Spector, M. P. ( 1998; ). The starvation-stress response (SSR) of Salmonella. Adv Microb Physiol 40, 233–279.
    [Google Scholar]
  50. Spector, M. P. & Cubitt, C. L. ( 1992; ). Starvation-inducible loci of Salmonella typhimurium: regulation and roles in starvation survival. Mol Microbiol 6, 1467–1476.[CrossRef]
    [Google Scholar]
  51. Spector, M. P. & Foster, J. W. ( 1993; ). Starvation-stress response (SSR) of Salmonella typhimurium: gene expression and survival during nutrient starvation. In Starvation in Bacteria, pp. 201–224. Edited by S. Kjelleberg. New York: Kluwer Academic/Plenum.
  52. Spector, M. P., Aliabadi, Z., Gonzalez, T. & Foster, J. W. ( 1986; ). Global control in Salmonella typhimurium: two-dimensional gel electrophoretic analysis of starvation-, anaerobiosis-, and heat-shock-inducible proteins. J Bacteriol 168, 420–424.
    [Google Scholar]
  53. Spector, M. P., Park, Y. K., Tirgari, S., Gonzalez, T. & Foster, J. W. ( 1988; ). Identification and characterization of starvation-regulated genetic loci in Salmonella typhimurium by using Mud-directed lacZ operon fusions. J Bacteriol 170, 345–351.
    [Google Scholar]
  54. Spector, M. P., DiRusso, C. C., Pallen, M. J., Garcia del Portillo, F., Dougan, G. & Finlay, B. B. ( 1999a; ). The medium-/long-chain fatty acyl-CoA dehydrogenase (fadF) gene of Salmonella typhimurium is a phase 1 starvation-stress response (SSR) locus. Microbiology 145, 15–31.[CrossRef]
    [Google Scholar]
  55. Spector, M. P., Garcia del Portillo, F., Bearson, S. M., Mahmud, A., Magut, M., Finlay, B. B., Dougan, G., Foster, J. W. & Pallen, M. J. ( 1999b; ). The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology 145, 3035–3045.
    [Google Scholar]
  56. Tanaka, K., Takayanagi, Y., Fujita, N., Ishihama, A. & Takahashi, H. ( 1993; ). Heterogeneity of the principal σ factor in Escherichia coli: the rpoS gene product, σ 38, is a second principal σ factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci U S A 90, 3511–3515.[CrossRef]
    [Google Scholar]
  57. Testerman, T. L., Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Libby, S. J. & Fang, F. C. ( 2002; ). The alternative sigma factor σ E controls antioxidant defenses required for Salmonella virulence and stationary-phase survival. Mol Microbiol 43, 771–782.[CrossRef]
    [Google Scholar]
  58. Tuomanen, E. & Cozens, R. ( 1987; ). Changes in peptidoglycan composition and penicillin-binding proteins in slowly growing Escherichia coli. J Bacteriol 169, 5308–5310.
    [Google Scholar]
  59. Tuomanen, E. & Schwartz, J. ( 1987; ). Penicillin-binding protein 7 and its relationship to lysis of non-growing Escherichia coli. J Bacteriol 169, 4912–4915.
    [Google Scholar]
  60. Typas, A. & Hengge, R. ( 2006; ). Role of the spacer between the −35 and −10 regions on σ S promoter selectivity in Escherichia coli. Mol Microbiol 59, 1037–1051.[CrossRef]
    [Google Scholar]
  61. Valdivia, R. H. & Falkow, S. ( 1997; ). Probing bacterial gene expression within host cells. Trends Microbiol 5, 360–363.[CrossRef]
    [Google Scholar]
  62. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge, R. ( 2005; ). Genome-wide analysis of the general stress response network in Escherichia coli: σ S-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187, 1591–1603.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005199-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005199-0
Loading

Data & Media loading...

Supplements

Phylogenetic comparison of the Typhimurium YohC protein with the YohC proteins of other γ-proteobacteria [PDF](210 KB).

PDF

Phylogenetic relationship of YohC homologues of , spp., and serovars [PDF](144 KB).

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error