Skip to content
1887

Abstract

Mycobacteria can tolerate relatively high concentrations of triphenylmethane dyes such as malachite green and methyl violet. To identify mycobacterial genes involved in the decolorization of malachite green, a transposon mutant library of mc 155 was screened for mutants unable to decolorize this dye. One of the genes identified was MSMEG_5126, an orthologue of encoding a 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO) synthase, which is essential for the biosynthesis of the electron carrier coenzyme F. The other gene identified was MSMEG_2392, encoding an alanine-rich protein with a DUF121 domain. The minimum inhibitory concentrations (MICs) for malachite green and methyl violet of the six mutants and two MSMEG_2392 mutants were one-third and one-fifth, respectively, of the MIC of the parent strain mc 155. Representative and MSMEG_2392 mutant strains were also sensitive to oxidative stress caused by the redox-cycling agents plumbagin and menadione, and the sensitivity was reversed in the complemented strains. HPLC analysis of representative and MSMEG_2392 strains revealed that, while the mutant lacked both coenzyme F and FO, the MSMEG_2392 mutant contained FO but not coenzyme F. These results indicate that MSMEG_2392 is involved in the biosynthesis of coenzyme F.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/009241-0
2007-08-01
2025-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2724.html?itemId=/content/journal/micro/10.1099/mic.0.2006/009241-0&mimeType=html&fmt=ahah

References

  1. Alderman D. J. 1985; Malachite green: a review. J Fish Dis 8:289–298
    [Google Scholar]
  2. Bair T. B., Isabelle D. W., Daniels L. 2001; Structures of coenzyme F420 in Mycobacterium species. Arch Microbiol 176:37–43
    [Google Scholar]
  3. Bose B., Gour R. R., Motiwale L., Gupta S., Rao K. V. K. 2004; Hyperphosphorylation of extracellular regulated kinase 2 (ERK2) and inhibition of JNK2 phosphorylation are associated with increased S-phase during transformation of Syrian hamster embryo cells by malachite green. Cell Biol Int 28:875–883
    [Google Scholar]
  4. Bose B., Motiwale L., Rao K. V. K. 2005; DNA damage and G2/M arrest in Syrian hamster embryo cells during malachite green exposure are associated with elevated phosphorylation of ERK1 and JNK1. Cancer Lett 230:260–270
    [Google Scholar]
  5. Cha C.-J., Doerge D. R., Cerniglia C. E. 2001; Biotransformation of malachite green by the fungus Cunninghamella elegans . Appl Environ Microbiol 67:4358–4360
    [Google Scholar]
  6. Choi K.-P., Bair T. B., Bae Y.-M., Daniels L. 2001; Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F420 biosynthesis by Mycobacterium bovis BCG. J Bacteriol 183:7058–7066
    [Google Scholar]
  7. Choi K.-P., Kendrick N., Daniels L. 2002; Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F420 and FO biosynthesis. J Bacteriol 184:2420–2428
    [Google Scholar]
  8. Culp S. J., Beland F. A. 1996; Malachite green: a toxicological review. J Am Coll Toxicol 15:219–238
    [Google Scholar]
  9. Darwin K. H., Sabine E., Gutierrez-Ramos J.-C., Weich N., Nathan C. F. 2003; The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–1966
    [Google Scholar]
  10. de Wit L. E. A., Eker A. P. M. 1987; 8-Hydroxy-5-deazaflavin-dependent electron transfer in the extreme halophile Halobacterium cutirubrum . FEMS Microbiol Lett 48:121–125
    [Google Scholar]
  11. Ebert S., Rieger P.-G., Knackmuss H.-J. 1999; Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2–1A. J Bacteriol 181:2669–2674
    [Google Scholar]
  12. Eker A. P., Kooiman P., Hessels J. K., Yasui A. 1990; DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans . J Biol Chem 265:8009–8015
    [Google Scholar]
  13. Fessard V., Godard T., Huet S., Mourot A., Poul J. M. 1999; Mutagenicity of malachite green and leucomalachite green in in vitro tests. J Appl Toxicol 19:421–430
    [Google Scholar]
  14. Garbe T. R., Birathi J., Barnini S., Zhang Y., Abou-Zeid C., Tang D., Mukherjee R., Young D. B. 1994; Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140:133–138
    [Google Scholar]
  15. Graham D. E., Xu H., White R. H. 2003; Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F420 biosynthesis. Arch Microbiol 180:455–464
    [Google Scholar]
  16. Graupner M., White R. H. 2001; Biosynthesis of the phosphodiester bond in coenzyme F(420) in the methanoarchaea. Biochemistry 40:10859–10872
    [Google Scholar]
  17. Gupta S., Sundarrajan M., Rao K. V. 2003; Tumor promotion by metanil yellow and malachite green during rat hepatocarcinogenesis is associated with dysregulated expression of cell cycle regulatory proteins. Teratog Carcinog Mutagen 1:301–312
    [Google Scholar]
  18. Hartzell P. L., Zvilius G., Escalante-Semerena J. C., Donnelly M. I. 1985; Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum . Biochem Biophys Res Commun 133:884–890
    [Google Scholar]
  19. Heine-Dobbernack E., Schoberth S. M., Sahm H. 1988; Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri . Appl Environ Microbiol 54:454–459
    [Google Scholar]
  20. Henderson A. L., Schmitt T. C., Heinze T. M., Cerniglia C. E. 1997; Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl Environ Microbiol 63:4099–4101
    [Google Scholar]
  21. Jacobson F. S., Daniels L., Fox J. A., Walsh C. T., Orme-Johnson W. H. 1982; Purification and properties of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum . J Biol Chem 257:3385–3388
    [Google Scholar]
  22. Jang M.-S., Lee Y.-M., Choi Y.-L., Cho Y.-S., Kim C.-H., Lee Y.-C. 2004; Isolation of Citrobacter sp. mutants defective in decolorizing malachite green. J Basic Microbiol 44:320–324
    [Google Scholar]
  23. Jang M.-S, Lee Y.-M., Kim C.-H., Lee J.-H., Kang D.-W., Kim S.-J., Lee Y.-C. 2005; Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli . Appl Environ Microbiol 71:7955–7960
    [Google Scholar]
  24. Johnson E. F., Mukhopadhyay B. 2005; A new type of sulfite reductase – a novel coenzyme F420-dependent enzyme from the methanarchaeon Methanocaldococcus jannaschii . J Biol Chem 280:38776–38786
    [Google Scholar]
  25. Jones J. J., Falkinham J. O III. 2003; Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob Agents Chemother 47:2323–2326
    [Google Scholar]
  26. Jones J. B., Stadtman T. C. 1980; Reconstitution of a formate-NADP+ oxidoreductase from formate dehydrogenase and a 5-deazaflavin-linked NADP+ reductase isolated from Methanococcus vannielii . J Biol Chem 255:1049–1053
    [Google Scholar]
  27. Kunow J., Linder D., Stetter K. O., Thauer R. K. 1994; F420H2: quinone oxidoreductase from Archaeoglobus fulgidus . Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. Eur J Biochem 223:503–511
    [Google Scholar]
  28. Larsen M. H. 2000; Some common methods in mycobacterial genetics. In Molecular Genetics of Mycobacteria pp 313–321 Edited by Hatfull G. F., Jacobs Jr. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Levin L., Papinutti L., Forchiassin F. 2004; Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol 94:169–176
    [Google Scholar]
  30. Li H., Graupner M., Xu H., White R. H. 2003a; CofE catalyzes the addition of two glutamates to F420–0 in F420 coenzyme biosynthesis in Methanococcus jannaschii . Biochemistry 42:9771–9778
    [Google Scholar]
  31. Li H., Xu H., Graham D. E., White R. H. 2003b; Glutathione synthetase homologs encode alpha-l-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc Natl Acad Sci U S A 100:9785–9790
    [Google Scholar]
  32. Lin X.-L., White R. H. 1986; Occurrence of coenzyme F420 and its gamma-monoglutamyl derivative in nonmethanogenic archaebacteria. J Bacteriol 168:444–448
    [Google Scholar]
  33. Littlefield N. A., Blackwell B.-N., Hewitt C. C., Gaylor D. W. 1985; Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fundam Appl Toxicol 5:902–912
    [Google Scholar]
  34. Lundberg B. E., Wolf R. E. Jr, Dinauer M. C., Xu Y., Fang F. C. 1999; Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun 67:436–438
    [Google Scholar]
  35. Ma K., Thauer R. K. 1990; Purification and properties of N 5, N 10-methylene-tetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg. Eur J Biochem 191:187–193
    [Google Scholar]
  36. Papinutti V. L., Forchiassin F. 2004; Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium . FEMS Microbiol Lett 231:205–209
    [Google Scholar]
  37. Purwantini E., Daniels L. 1998; Molecular analysis of the gene encoding F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis . J Bacteriol 180:2212–2219
    [Google Scholar]
  38. Purwantini E., Gillis T. P., Daniels L. 1997; Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiol Lett 146:129–134
    [Google Scholar]
  39. Rawat M., Newton G. L., Ko M., Martinez G. J., Fahey R. C., Av-Gay Y. 2002; Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 46:3348–3355
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  41. Schnick R. A. 1988; The impetus to register new therapeutants for aquaculture. Prog Fish-Cult 50:190–196
    [Google Scholar]
  42. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., Jacobs W. R Jr. 1988; Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci U S A 85:6987–6991
    [Google Scholar]
  43. Stammati A., Nebbia C., De Angelis I., Albo A. G., Carletti M., Rebecchi C., Zampaglioni F., Decasto M. 2005; Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicol In Vitro 19853–858
    [Google Scholar]
  44. US Environmental Protection Agency W. R. 2005; Factsheet 530-F-05–004. Waste from the production of dyes and pigments listed as hazardous.
  45. Widdel F., Wolfe R. S. 1989; Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch Microbiol 152:322–328
    [Google Scholar]
  46. Yatome C., Ogawa T., Matsui M. 1991; Degradation of crystal violet by Bacillus subtilis . J Environ Sci Health A 26:75–87
    [Google Scholar]
  47. Yatome C., Yamada S., Ogawa T., Matsui M. 1993; Degradation of crystal violet by Nocardia corallina . Appl Microbiol Biotechnol 38:565–569
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2006/009241-0
Loading
/content/journal/micro/10.1099/mic.0.2006/009241-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error