1887

Abstract

Mycobacteria can tolerate relatively high concentrations of triphenylmethane dyes such as malachite green and methyl violet. To identify mycobacterial genes involved in the decolorization of malachite green, a transposon mutant library of mc 155 was screened for mutants unable to decolorize this dye. One of the genes identified was MSMEG_5126, an orthologue of encoding a 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO) synthase, which is essential for the biosynthesis of the electron carrier coenzyme F. The other gene identified was MSMEG_2392, encoding an alanine-rich protein with a DUF121 domain. The minimum inhibitory concentrations (MICs) for malachite green and methyl violet of the six mutants and two MSMEG_2392 mutants were one-third and one-fifth, respectively, of the MIC of the parent strain mc 155. Representative and MSMEG_2392 mutant strains were also sensitive to oxidative stress caused by the redox-cycling agents plumbagin and menadione, and the sensitivity was reversed in the complemented strains. HPLC analysis of representative and MSMEG_2392 strains revealed that, while the mutant lacked both coenzyme F and FO, the MSMEG_2392 mutant contained FO but not coenzyme F. These results indicate that MSMEG_2392 is involved in the biosynthesis of coenzyme F.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/009241-0
2007-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2724.html?itemId=/content/journal/micro/10.1099/mic.0.2006/009241-0&mimeType=html&fmt=ahah

References

  1. Alderman, D. J. ( 1985; ). Malachite green: a review. J Fish Dis 8, 289–298.[CrossRef]
    [Google Scholar]
  2. Bair, T. B., Isabelle, D. W. & Daniels, L. ( 2001; ). Structures of coenzyme F420 in Mycobacterium species. Arch Microbiol 176, 37–43.[CrossRef]
    [Google Scholar]
  3. Bose, B., Gour, R. R., Motiwale, L., Gupta, S. & Rao, K. V. K. ( 2004; ). Hyperphosphorylation of extracellular regulated kinase 2 (ERK2) and inhibition of JNK2 phosphorylation are associated with increased S-phase during transformation of Syrian hamster embryo cells by malachite green. Cell Biol Int 28, 875–883.[CrossRef]
    [Google Scholar]
  4. Bose, B., Motiwale, L. & Rao, K. V. K. ( 2005; ). DNA damage and G2/M arrest in Syrian hamster embryo cells during malachite green exposure are associated with elevated phosphorylation of ERK1 and JNK1. Cancer Lett 230, 260–270.[CrossRef]
    [Google Scholar]
  5. Cha, C.-J., Doerge, D. R. & Cerniglia, C. E. ( 2001; ). Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol 67, 4358–4360.[CrossRef]
    [Google Scholar]
  6. Choi, K.-P., Bair, T. B., Bae, Y.-M. & Daniels, L. ( 2001; ). Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F420 biosynthesis by Mycobacterium bovis BCG. J Bacteriol 183, 7058–7066.[CrossRef]
    [Google Scholar]
  7. Choi, K.-P., Kendrick, N. & Daniels, L. ( 2002; ). Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F420 and FO biosynthesis. J Bacteriol 184, 2420–2428.[CrossRef]
    [Google Scholar]
  8. Culp, S. J. & Beland, F. A. ( 1996; ). Malachite green: a toxicological review. J Am Coll Toxicol 15, 219–238.[CrossRef]
    [Google Scholar]
  9. Darwin, K. H., Sabine, E., Gutierrez-Ramos, J.-C., Weich, N. & Nathan, C. F. ( 2003; ). The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302, 1963–1966.[CrossRef]
    [Google Scholar]
  10. de Wit, L. E. A. & Eker, A. P. M. ( 1987; ). 8-Hydroxy-5-deazaflavin-dependent electron transfer in the extreme halophile Halobacterium cutirubrum. FEMS Microbiol Lett 48, 121–125.
    [Google Scholar]
  11. Ebert, S., Rieger, P.-G. & Knackmuss, H.-J. ( 1999; ). Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2–1A. J Bacteriol 181, 2669–2674.
    [Google Scholar]
  12. Eker, A. P., Kooiman, P., Hessels, J. K. & Yasui, A. ( 1990; ). DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem 265, 8009–8015.
    [Google Scholar]
  13. Fessard, V., Godard, T., Huet, S., Mourot, A. & Poul, J. M. ( 1999; ). Mutagenicity of malachite green and leucomalachite green in in vitro tests. J Appl Toxicol 19, 421–430.[CrossRef]
    [Google Scholar]
  14. Garbe, T. R., Birathi, J., Barnini, S., Zhang, Y., Abou-Zeid, C., Tang, D., Mukherjee, R. & Young, D. B. ( 1994; ). Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140, 133–138.[CrossRef]
    [Google Scholar]
  15. Graham, D. E., Xu, H. & White, R. H. ( 2003; ). Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F420 biosynthesis. Arch Microbiol 180, 455–464.[CrossRef]
    [Google Scholar]
  16. Graupner, M. & White, R. H. ( 2001; ). Biosynthesis of the phosphodiester bond in coenzyme F(420) in the methanoarchaea. Biochemistry 40, 10859–10872.[CrossRef]
    [Google Scholar]
  17. Gupta, S., Sundarrajan, M. & Rao, K. V. ( 2003; ). Tumor promotion by metanil yellow and malachite green during rat hepatocarcinogenesis is associated with dysregulated expression of cell cycle regulatory proteins. Teratog Carcinog Mutagen 1, 301–312.
    [Google Scholar]
  18. Hartzell, P. L., Zvilius, G., Escalante-Semerena, J. C. & Donnelly, M. I. ( 1985; ). Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 133, 884–890.[CrossRef]
    [Google Scholar]
  19. Heine-Dobbernack, E., Schoberth, S. M. & Sahm, H. ( 1988; ). Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl Environ Microbiol 54, 454–459.
    [Google Scholar]
  20. Henderson, A. L., Schmitt, T. C., Heinze, T. M. & Cerniglia, C. E. ( 1997; ). Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl Environ Microbiol 63, 4099–4101.
    [Google Scholar]
  21. Jacobson, F. S., Daniels, L., Fox, J. A., Walsh, C. T. & Orme-Johnson, W. H. ( 1982; ). Purification and properties of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. J Biol Chem 257, 3385–3388.
    [Google Scholar]
  22. Jang, M.-S., Lee, Y.-M., Choi, Y.-L., Cho, Y.-S., Kim, C.-H. & Lee, Y.-C. ( 2004; ). Isolation of Citrobacter sp. mutants defective in decolorizing malachite green. J Basic Microbiol 44, 320–324.[CrossRef]
    [Google Scholar]
  23. Jang, M.-S., Lee, Y.-M., Kim, C.-H., Lee, J.-H., Kang, D.-W., Kim, S.-J. & Lee, Y.-C. ( 2005; ). Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Appl Environ Microbiol 71, 7955–7960.[CrossRef]
    [Google Scholar]
  24. Johnson, E. F. & Mukhopadhyay, B. ( 2005; ). A new type of sulfite reductase – a novel coenzyme F420-dependent enzyme from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem 280, 38776–38786.[CrossRef]
    [Google Scholar]
  25. Jones, J. J. & Falkinham, J. O., III ( 2003; ). Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob Agents Chemother 47, 2323–2326.[CrossRef]
    [Google Scholar]
  26. Jones, J. B. & Stadtman, T. C. ( 1980; ). Reconstitution of a formate-NADP+ oxidoreductase from formate dehydrogenase and a 5-deazaflavin-linked NADP+ reductase isolated from Methanococcus vannielii. J Biol Chem 255, 1049–1053.
    [Google Scholar]
  27. Kunow, J., Linder, D., Stetter, K. O. & Thauer, R. K. ( 1994; ). F420H2:quinone oxidoreductase from Archaeoglobus fulgidus. Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. Eur J Biochem 223, 503–511.[CrossRef]
    [Google Scholar]
  28. Larsen, M. H. ( 2000; ). Some common methods in mycobacterial genetics. In Molecular Genetics of Mycobacteria, pp. 313–321. Edited by G. F. Hatfull & W. R. Jacobs, Jr. Washington, DC: American Society for Microbiology.
  29. Levin, L., Papinutti, L. & Forchiassin, F. ( 2004; ). Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol 94, 169–176.[CrossRef]
    [Google Scholar]
  30. Li, H., Graupner, M., Xu, H. & White, R. H. ( 2003a; ). CofE catalyzes the addition of two glutamates to F420–0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Biochemistry 42, 9771–9778.[CrossRef]
    [Google Scholar]
  31. Li, H., Xu, H., Graham, D. E. & White, R. H. ( 2003b; ). Glutathione synthetase homologs encode alpha-l-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc Natl Acad Sci U S A 100, 9785–9790.[CrossRef]
    [Google Scholar]
  32. Lin, X.-L. & White, R. H. ( 1986; ). Occurrence of coenzyme F420 and its gamma-monoglutamyl derivative in nonmethanogenic archaebacteria. J Bacteriol 168, 444–448.
    [Google Scholar]
  33. Littlefield, N. A., Blackwell, B.-N., Hewitt, C. C. & Gaylor, D. W. ( 1985; ). Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fundam Appl Toxicol 5, 902–912.[CrossRef]
    [Google Scholar]
  34. Lundberg, B. E., Wolf, R. E., Jr, Dinauer, M. C., Xu, Y. & Fang, F. C. ( 1999; ). Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun 67, 436–438.
    [Google Scholar]
  35. Ma, K. & Thauer, R. K. ( 1990; ). Purification and properties of N 5,N 10-methylene-tetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 191, 187–193.[CrossRef]
    [Google Scholar]
  36. Papinutti, V. L. & Forchiassin, F. ( 2004; ). Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium. FEMS Microbiol Lett 231, 205–209.[CrossRef]
    [Google Scholar]
  37. Purwantini, E. & Daniels, L. ( 1998; ). Molecular analysis of the gene encoding F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 180, 2212–2219.
    [Google Scholar]
  38. Purwantini, E., Gillis, T. P. & Daniels, L. ( 1997; ). Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiol Lett 146, 129–134.[CrossRef]
    [Google Scholar]
  39. Rawat, M., Newton, G. L., Ko, M., Martinez, G. J., Fahey, R. C. & Av-Gay, Y. ( 2002; ). Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 46, 3348–3355.[CrossRef]
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Schnick, R. A. ( 1988; ). The impetus to register new therapeutants for aquaculture. Prog Fish-Cult 50, 190–196.[CrossRef]
    [Google Scholar]
  42. Snapper, S. B., Lugosi, L., Jekkel, A., Melton, R. E., Kieser, T., Bloom, B. R. & Jacobs, W. R., Jr ( 1988; ). Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci U S A 85, 6987–6991.[CrossRef]
    [Google Scholar]
  43. Stammati, A., Nebbia, C., De Angelis, I., Albo, A. G., Carletti, M., Rebecchi, C., Zampaglioni, F. & Decasto, M. ( 2005; ). Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicol In Vitro 19, 853–858.[CrossRef]
    [Google Scholar]
  44. US Environmental Protection Agency ( 2005; ). Factsheet 530-F-05–004. Waste from the production of dyes and pigments listed as hazardous.
  45. Widdel, F. & Wolfe, R. S. ( 1989; ). Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch Microbiol 152, 322–328.[CrossRef]
    [Google Scholar]
  46. Yatome, C., Ogawa, T. & Matsui, M. ( 1991; ). Degradation of crystal violet by Bacillus subtilis. J Environ Sci Health A 26, 75–87.
    [Google Scholar]
  47. Yatome, C., Yamada, S., Ogawa, T. & Matsui, M. ( 1993; ). Degradation of crystal violet by Nocardia corallina. Appl Microbiol Biotechnol 38, 565–569.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/009241-0
Loading
/content/journal/micro/10.1099/mic.0.2006/009241-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error