1887

Abstract

Mycobacteria can tolerate relatively high concentrations of triphenylmethane dyes such as malachite green and methyl violet. To identify mycobacterial genes involved in the decolorization of malachite green, a transposon mutant library of mc 155 was screened for mutants unable to decolorize this dye. One of the genes identified was MSMEG_5126, an orthologue of encoding a 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO) synthase, which is essential for the biosynthesis of the electron carrier coenzyme F. The other gene identified was MSMEG_2392, encoding an alanine-rich protein with a DUF121 domain. The minimum inhibitory concentrations (MICs) for malachite green and methyl violet of the six mutants and two MSMEG_2392 mutants were one-third and one-fifth, respectively, of the MIC of the parent strain mc 155. Representative and MSMEG_2392 mutant strains were also sensitive to oxidative stress caused by the redox-cycling agents plumbagin and menadione, and the sensitivity was reversed in the complemented strains. HPLC analysis of representative and MSMEG_2392 strains revealed that, while the mutant lacked both coenzyme F and FO, the MSMEG_2392 mutant contained FO but not coenzyme F. These results indicate that MSMEG_2392 is involved in the biosynthesis of coenzyme F.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/009241-0
2007-08-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2724.html?itemId=/content/journal/micro/10.1099/mic.0.2006/009241-0&mimeType=html&fmt=ahah

References

  1. Alderman D. J.. 1985; Malachite green: a review. J Fish Dis8:289–298
    [Google Scholar]
  2. Bair T. B., Isabelle D. W., Daniels L.. 2001; Structures of coenzyme F420 in Mycobacterium species. Arch Microbiol176:37–43
    [Google Scholar]
  3. Bose B., Gour R. R., Motiwale L., Gupta S., Rao K. V. K.. 2004; Hyperphosphorylation of extracellular regulated kinase 2 (ERK2) and inhibition of JNK2 phosphorylation are associated with increased S-phase during transformation of Syrian hamster embryo cells by malachite green. Cell Biol Int28:875–883
    [Google Scholar]
  4. Bose B., Motiwale L., Rao K. V. K.. 2005; DNA damage and G2/M arrest in Syrian hamster embryo cells during malachite green exposure are associated with elevated phosphorylation of ERK1 and JNK1. Cancer Lett230:260–270
    [Google Scholar]
  5. Cha C.-J., Doerge D. R., Cerniglia C. E.. 2001; Biotransformation of malachite green by the fungus Cunninghamella elegans . Appl Environ Microbiol67:4358–4360
    [Google Scholar]
  6. Choi K.-P., Bair T. B., Bae Y.-M., Daniels L.. 2001; Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F420 biosynthesis by Mycobacterium bovis BCG. J Bacteriol183:7058–7066
    [Google Scholar]
  7. Choi K.-P., Kendrick N., Daniels L.. 2002; Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F420 and FO biosynthesis. J Bacteriol184:2420–2428
    [Google Scholar]
  8. Culp S. J., Beland F. A.. 1996; Malachite green: a toxicological review. J Am Coll Toxicol15:219–238
    [Google Scholar]
  9. Darwin K. H., Sabine E., Gutierrez-Ramos J.-C., Weich N., Nathan C. F.. 2003; The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science302:1963–1966
    [Google Scholar]
  10. de Wit L. E. A., Eker A. P. M.. 1987; 8-Hydroxy-5-deazaflavin-dependent electron transfer in the extreme halophile Halobacterium cutirubrum . FEMS Microbiol Lett48:121–125
    [Google Scholar]
  11. Ebert S., Rieger P.-G., Knackmuss H.-J.. 1999; Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2–1A. J Bacteriol181:2669–2674
    [Google Scholar]
  12. Eker A. P., Kooiman P., Hessels J. K., Yasui A.. 1990; DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans . J Biol Chem265:8009–8015
    [Google Scholar]
  13. Fessard V., Godard T., Huet S., Mourot A., Poul J. M.. 1999; Mutagenicity of malachite green and leucomalachite green in in vitro tests. J Appl Toxicol19:421–430
    [Google Scholar]
  14. Garbe T. R., Birathi J., Barnini S., Zhang Y., Abou-Zeid C., Tang D., Mukherjee R., Young D. B.. 1994; Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology140:133–138
    [Google Scholar]
  15. Graham D. E., Xu H., White R. H.. 2003; Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F420 biosynthesis. Arch Microbiol180:455–464
    [Google Scholar]
  16. Graupner M., White R. H.. 2001; Biosynthesis of the phosphodiester bond in coenzyme F(420) in the methanoarchaea. Biochemistry40:10859–10872
    [Google Scholar]
  17. Gupta S., Sundarrajan M., Rao K. V.. 2003; Tumor promotion by metanil yellow and malachite green during rat hepatocarcinogenesis is associated with dysregulated expression of cell cycle regulatory proteins. Teratog Carcinog Mutagen1:301–312
    [Google Scholar]
  18. Hartzell P. L., Zvilius G., Escalante-Semerena J. C., Donnelly M. I.. 1985; Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum . Biochem Biophys Res Commun133:884–890
    [Google Scholar]
  19. Heine-Dobbernack E., Schoberth S. M., Sahm H.. 1988; Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri . Appl Environ Microbiol54:454–459
    [Google Scholar]
  20. Henderson A. L., Schmitt T. C., Heinze T. M., Cerniglia C. E.. 1997; Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl Environ Microbiol63:4099–4101
    [Google Scholar]
  21. Jacobson F. S., Daniels L., Fox J. A., Walsh C. T., Orme-Johnson W. H.. 1982; Purification and properties of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum . J Biol Chem257:3385–3388
    [Google Scholar]
  22. Jang M.-S., Lee Y.-M., Choi Y.-L., Cho Y.-S., Kim C.-H., Lee Y.-C.. 2004; Isolation of Citrobacter sp. mutants defective in decolorizing malachite green. J Basic Microbiol44:320–324
    [Google Scholar]
  23. Jang M.-S, Lee Y.-M., Kim C.-H., Lee J.-H., Kang D.-W., Kim S.-J., Lee Y.-C.. 2005; Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli . Appl Environ Microbiol71:7955–7960
    [Google Scholar]
  24. Johnson E. F., Mukhopadhyay B.. 2005; A new type of sulfite reductase – a novel coenzyme F420-dependent enzyme from the methanarchaeon Methanocaldococcus jannaschii . J Biol Chem280:38776–38786
    [Google Scholar]
  25. Jones J. J., Falkinham J. O III. 2003; Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob Agents Chemother47:2323–2326
    [Google Scholar]
  26. Jones J. B., Stadtman T. C.. 1980; Reconstitution of a formate-NADP+ oxidoreductase from formate dehydrogenase and a 5-deazaflavin-linked NADP+ reductase isolated from Methanococcus vannielii . J Biol Chem255:1049–1053
    [Google Scholar]
  27. Kunow J., Linder D., Stetter K. O., Thauer R. K.. 1994; F420H2: quinone oxidoreductase from Archaeoglobus fulgidus . Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. Eur J Biochem223:503–511
    [Google Scholar]
  28. Larsen M. H.. 2000; Some common methods in mycobacterial genetics. In Molecular Genetics of Mycobacteria pp313–321 Edited by Hatfull G. F., Jacobs Jr. Washington, DC: American Society for Microbiology;
  29. Levin L., Papinutti L., Forchiassin F.. 2004; Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol94:169–176
    [Google Scholar]
  30. Li H., Graupner M., Xu H., White R. H.. 2003a; CofE catalyzes the addition of two glutamates to F420–0 in F420 coenzyme biosynthesis in Methanococcus jannaschii . Biochemistry42:9771–9778
    [Google Scholar]
  31. Li H., Xu H., Graham D. E., White R. H.. 2003b; Glutathione synthetase homologs encode alpha-l-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc Natl Acad Sci U S A100:9785–9790
    [Google Scholar]
  32. Lin X.-L., White R. H.. 1986; Occurrence of coenzyme F420 and its gamma-monoglutamyl derivative in nonmethanogenic archaebacteria. J Bacteriol168:444–448
    [Google Scholar]
  33. Littlefield N. A., Blackwell B.-N., Hewitt C. C., Gaylor D. W.. 1985; Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fundam Appl Toxicol5:902–912
    [Google Scholar]
  34. Lundberg B. E., Wolf R. E. Jr, Dinauer M. C., Xu Y., Fang F. C.. 1999; Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun67:436–438
    [Google Scholar]
  35. Ma K., Thauer R. K.. 1990; Purification and properties of N 5, N 10-methylene-tetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg. Eur J Biochem191:187–193
    [Google Scholar]
  36. Papinutti V. L., Forchiassin F.. 2004; Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium . FEMS Microbiol Lett231:205–209
    [Google Scholar]
  37. Purwantini E., Daniels L.. 1998; Molecular analysis of the gene encoding F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis . J Bacteriol180:2212–2219
    [Google Scholar]
  38. Purwantini E., Gillis T. P., Daniels L.. 1997; Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiol Lett146:129–134
    [Google Scholar]
  39. Rawat M., Newton G. L., Ko M., Martinez G. J., Fahey R. C., Av-Gay Y.. 2002; Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother46:3348–3355
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  41. Schnick R. A.. 1988; The impetus to register new therapeutants for aquaculture. Prog Fish-Cult50:190–196
    [Google Scholar]
  42. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., Jacobs W. R Jr. 1988; Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci U S A85:6987–6991
    [Google Scholar]
  43. Stammati A., Nebbia C., De Angelis I., Albo A. G., Carletti M., Rebecchi C., Zampaglioni F., Decasto M.. 2005; Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicol In Vitro19853–858
    [Google Scholar]
  44. US Environmental Protection Agency W. R. 2005; Factsheet 530-F-05–004. Waste from the production of dyes and pigments listed as hazardous.
  45. Widdel F., Wolfe R. S.. 1989; Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch Microbiol152:322–328
    [Google Scholar]
  46. Yatome C., Ogawa T., Matsui M.. 1991; Degradation of crystal violet by Bacillus subtilis . J Environ Sci Health A26:75–87
    [Google Scholar]
  47. Yatome C., Yamada S., Ogawa T., Matsui M.. 1993; Degradation of crystal violet by Nocardia corallina . Appl Microbiol Biotechnol38:565–569
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/009241-0
Loading
/content/journal/micro/10.1099/mic.0.2006/009241-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error