1887

Abstract

serovar Typhimurium ( Typhimurium) is a zoonotic enteric pathogen of worldwide importance and pigs are a significant reservoir of human infection. Signature-tagged transposon mutagenesis (STM) was used to identify genes required by . Typhimurium to colonize porcine intestines. A library of 1045 signature-tagged mutants of . Typhimurium ST4/74 Nal was screened following oral inoculation of pigs in duplicate. A total of 119 attenuating mutations were identified in 95 different genes, many of which encode known or putative secreted or surface-anchored molecules. A large number of attenuating mutations were located within pathogenicity islands (SPI)-1 and -2, confirming important roles for type III secretion systems (T3SS)-1 and -2 in intestinal colonization of pigs. Roles for genes encoded in other pathogenicity islands and islets, including the SPI-6-encoded Saf atypical fimbriae, were also identified. Given the role of secreted factors and the protection conferred against other pathogens by vaccination with extracellular and type III secreted proteins, the efficacy of a secreted protein vaccine from wild-type . Typhimurium following intramuscular vaccination of pigs was evaluated. Serum IgG responses against type III secreted proteins were induced following vaccination and a significant reduction in faecal excretion of . Typhimurium was observed in the acute phase of infection compared to mock-vaccinated animals. Vaccination with secreted proteins from an isogenic . Typhimurium mutant produced comparable levels of protection to vaccination with the preparation from the parent strain, indicating that protection was not reliant on T3SS-1 secreted proteins. The data provide valuable information for the control of in pigs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/006726-0
2007-06-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1940.html?itemId=/content/journal/micro/10.1099/mic.0.2006/006726-0&mimeType=html&fmt=ahah

References

  1. Althouse, C., Patterson, S., Fedorka-Cray, P. & Isaacson, R. E. ( 2003; ). Type I fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect Immun 71, 6446–6452.[CrossRef]
    [Google Scholar]
  2. Amavisit, P., Lightfoot, D., Browning, G. F. & Markham, P. F. ( 2003; ). Variation between pathogenic serovars within Salmonella pathogenicity islands. J Bacteriol 185, 3624–3635.[CrossRef]
    [Google Scholar]
  3. Belden, W. J. & Miller, S. I. ( 1994; ). Further characterization of the PhoP regulon: identification of new PhoP-activated virulence loci. Infect Immun 62, 5095–5101.
    [Google Scholar]
  4. Berends, B. R., Urlings, H. A., Snijders, J. M. & Van Knapen, F. ( 1996; ). Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int J Food Microbiol 30, 37–53.[CrossRef]
    [Google Scholar]
  5. Bijlsma, J. J. & Groisman, E. A. ( 2005; ). The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol Microbiol 57, 85–96.[CrossRef]
    [Google Scholar]
  6. Bispham, J., Tripathi, B. N., Watson, P. R. & Wallis, T. S. ( 2001; ). Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella-induced enteritis in calves. Infect Immun 69, 367–377.[CrossRef]
    [Google Scholar]
  7. Blanc-Potard, A. B. & Groisman, E. A. ( 1997; ). The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16, 5376–5385.[CrossRef]
    [Google Scholar]
  8. Blanc-Potard, A. B., Solomon, F., Kayser, J. & Groisman, E. A. ( 1999; ). The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 181, 998–1004.
    [Google Scholar]
  9. Boyen, F., Pasmans, F., Donne, E., Van Immerseel, F., Adriaensen, C., Hernalsteens, J. P., Ducatelle, R. & Haesebrouck, F. ( 2006a; ). Role of SPI-1 in the interactions of Salmonella Typhimurium with porcine macrophages. Vet Microbiol 113, 35–44.[CrossRef]
    [Google Scholar]
  10. Boyen, F., Pasmans, F., Van Immerseel, F., Morgan, E., Adriaensen, C., Hernalsteens, J. P., Decostere, A., Ducatelle, R. & Haesebrouck, F. ( 2006b; ). Salmonella Typhimurium SPI-1 genes promote intestinal but not tonsillar colonization in pigs. Microbes Infect 8, 2899–2907.[CrossRef]
    [Google Scholar]
  11. Clegg, S. & Hughes, K. T. ( 2002; ). FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 184, 1209–1213.[CrossRef]
    [Google Scholar]
  12. Collins, D. M., Skou, B., White, S., Bassett, S., Collins, L., For, R., Hurr, K., Hotter, G. & de Lisle, G. W. ( 2005; ). Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infect Immun 73, 2379–2386.[CrossRef]
    [Google Scholar]
  13. Darwin, K. H., Robinson, L. S. & Miller, V. L. ( 2001; ). SigE is a chaperone for the Salmonella enterica serovar Typhimurium invasion protein SigD. J Bacteriol 183, 1452–1454.[CrossRef]
    [Google Scholar]
  14. Davies, R. H., Dalziel, R., Gibbens, J. C., Wilesmith, J. W., Ryan, J. M., Evans, S. J., Byrne, C., Paiba, G. A., Pascoe, S. J. & Teale, C. J. ( 2004; ). National survey for Salmonella in pigs, cattle and sheep at slaughter in Great Britain (1999–2000). J Appl Microbiol 96, 750–760.[CrossRef]
    [Google Scholar]
  15. Dorsey, C. W., Laarakker, M. C., Humphries, A. D., Weening, E. H. & Baumler, A. J. ( 2005; ). Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol 57, 196–211.[CrossRef]
    [Google Scholar]
  16. Drecktrah, D., Knodler, L. A., Galbraith, K. & Steele-Mortimer, O. ( 2005; ). The Salmonella SPI1 effector SopB stimulates nitric oxide production long after invasion. Cell Microbiol 7, 105–113.
    [Google Scholar]
  17. Dziva, F., van Diemen, P. M., Stevens, M. P., Smith, A. J. & Wallis, T. S. ( 2004; ). Identification of Escherichia coli O157:H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150, 3631–3645.[CrossRef]
    [Google Scholar]
  18. Flashner, Y., Mamroud, E., Tidhar, A., Ber, R., Aftalion, M., Gur, D., Lazar, S., Zvi, A., Bino, T. & other authors ( 2004; ). Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates. Infect Immun 72, 908–915.[CrossRef]
    [Google Scholar]
  19. Folkesson, A., Advani, A., Sukupolvi, S., Pfeifer, J. D., Normark, S. & Lofdahl, S. ( 1999; ). Multiple insertions of fimbrial operons correlate with the evolution of Salmonella serovars responsible for human disease. Mol Microbiol 33, 612–622.[CrossRef]
    [Google Scholar]
  20. Folkesson, A., Lofdahl, S. & Normark, S. ( 2002; ). The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 153, 537–545.[CrossRef]
    [Google Scholar]
  21. Galan, J. E. ( 1996; ). Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20, 263–271.[CrossRef]
    [Google Scholar]
  22. Galan, J. E. & Curtiss, R., III ( 1989; ). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A 86, 6383–6387.[CrossRef]
    [Google Scholar]
  23. Galyov, E. E., Wood, M. W., Rosqvist, R., Mullan, P. B., Watson, P. R., Hedges, S. & Wallis, T. S. ( 1997; ). A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol 25, 903–912.[CrossRef]
    [Google Scholar]
  24. Garcia Vescovi, E., Soncini, F. C. & Groisman, E. A. ( 1996; ). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84, 165–174.[CrossRef]
    [Google Scholar]
  25. Groisman, E. A. ( 2001; ). The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183, 1835–1842.[CrossRef]
    [Google Scholar]
  26. Gunzel, D., Kucharski, L. M., Kehres, D. G., Romero, M. F. & Maguire, M. E. ( 2006; ). The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na+,K+-ATPase. J Bacteriol 188, 5586–5594.[CrossRef]
    [Google Scholar]
  27. Hensel, M. ( 2000; ). Salmonella pathogenicity island 2. Mol Microbiol 36, 1015–1023.[CrossRef]
    [Google Scholar]
  28. Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E. & Holden, D. W. ( 1995; ). Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403.[CrossRef]
    [Google Scholar]
  29. Hong, K. H. & Miller, V. L. ( 1998; ). Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J Bacteriol 180, 1793–1802.
    [Google Scholar]
  30. Hurd, H. S., McKean, J. D., Griffith, R. W., Wesley, I. V. & Rostagno, M. H. ( 2002; ). Salmonella enterica infections in market swine with and without transport and holding. Appl Environ Microbiol 68, 2376–2381.[CrossRef]
    [Google Scholar]
  31. Jack, D. L., Yang, N. M. & Saier, M. H., Jr ( 2001; ). The drug/metabolite transporter superfamily. Eur J Biochem 268, 3620–3639.[CrossRef]
    [Google Scholar]
  32. Jones, B. D. & Falkow, S. ( 1994; ). Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun 62, 3745–3752.
    [Google Scholar]
  33. Ku, Y. W., McDonough, S. P., Palaniappan, R. U., Chang, C. F. & Chang, Y. F. ( 2005; ). Novel attenuated Salmonella enterica serovar Choleraesuis strains as live vaccine candidates generated by signature-tagged mutagenesis. Infect Immun 73, 8194–8203.[CrossRef]
    [Google Scholar]
  34. Kubori, T., Sukhan, A., Aizawa, S. I. & Galan, J. E. ( 2000; ). Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97, 10225–10230.[CrossRef]
    [Google Scholar]
  35. Leary, S. E., Williamson, E. D., Griffin, K. F., Russell, P., Eley, S. M. & Titball, R. W. ( 1995; ). Active immunization with recombinant V antigen from Yersinia pestis protects mice against plague. Infect Immun 63, 2854–2858.
    [Google Scholar]
  36. Lichtensteiger, C. A. & Vimr, E. R. ( 2003; ). Systemic and enteric colonization of pigs by a hilA signature-tagged mutant of Salmonella choleraesuis. Microb Pathog 34, 149–154.[CrossRef]
    [Google Scholar]
  37. McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M. & other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  38. Moncrief, M. B. & Maguire, M. E. ( 1998; ). Magnesium and the role of MgtC in growth of Salmonella typhimurium. Infect Immun 66, 3802–3809.
    [Google Scholar]
  39. Monsieurs, P., De Keersmaecker, S., Navarre, W. W., Bader, M. W., De Smet, F., McClelland, M., Fang, F. C., De Moor, B., Vanderleyden, J. & Marchal, K. ( 2005; ). Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J Mol Evol 60, 462–474.[CrossRef]
    [Google Scholar]
  40. Morgan, E., Campbell, J. D., Rowe, S. C., Bispham, J., Stevens, M. P., Bowen, A. J., Barrow, P. A., Maskell, D. J. & Wallis, T. S. ( 2004; ). Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54, 994–1010.[CrossRef]
    [Google Scholar]
  41. Morgan, E., Bowen, A. J., Carnell, S. C., Wallis, T. S. & Stevens, M. P. ( 2007; ). SiiE is secreted by the Salmonella enterica serovar Typhimurium Pathogenicity Island 4 (SPI-4)-encoded secretion system and contributes to intestinal colonization of cattle. Infect Immun 75, 1524–1533.[CrossRef]
    [Google Scholar]
  42. Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. ( 1998; ). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A 95, 14057–14059.[CrossRef]
    [Google Scholar]
  43. Parkhill, J., Dougan, G., James, K. D., Thomson, N. R., Pickard, D., Wain, J., Churcher, C., Mungall, K. L., Bentley, S. D. & other authors ( 2001; ). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852.[CrossRef]
    [Google Scholar]
  44. Potter, A. A., Klashinsky, S., Li, Y., Frey, E., Townsend, H., Rogan, D., Erickson, G., Hinkley, S., Klopfenstein, T. & other authors ( 2004; ). Decreased shedding of Escherichia coli O157 : H7 by cattle following vaccination with type III secreted proteins. Vaccine 22, 362–369.[CrossRef]
    [Google Scholar]
  45. Raetz, C. R. & Whitfield, C. ( 2002; ). Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635–700.[CrossRef]
    [Google Scholar]
  46. Shah, D. H., Lee, M. J., Park, J. H., Lee, J. H., Eo, S. K., Kwon, J. T. & Chae, J. S. ( 2005; ). Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 151, 3957–3968.[CrossRef]
    [Google Scholar]
  47. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. ( 1996; ). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93, 2593–2597.[CrossRef]
    [Google Scholar]
  48. Short, J. M., Fernandez, J. M., Sorge, J. A. & Huse, W. D. ( 1988; ). Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res 16, 7583–7600.[CrossRef]
    [Google Scholar]
  49. Snavely, M. D., Miller, C. G. & Maguire, M. E. ( 1991; ). The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem 266, 815–823.
    [Google Scholar]
  50. Tsolis, R. M., Townsend, S. M., Miao, E. A., Miller, S. I., Ficht, T. A., Adams, L. G. & Baumler, A. J. ( 1999; ). Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun 67, 6385–6393.
    [Google Scholar]
  51. van Diemen, P. M., Dziva, F., Stevens, M. P. & Wallis, T. S. ( 2005; ). Identification of enterohemorrhagic Escherichia coli O26 : H- genes required for intestinal colonization in calves. Infect Immun 73, 1735–1743.[CrossRef]
    [Google Scholar]
  52. van Velkinburgh, J. C. & Gunn, J. S. ( 1999; ). PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect Immun 67, 1614–1622.
    [Google Scholar]
  53. Wood, M. W., Jones, M. A., Watson, P. R., Hedges, S., Wallis, T. S. & Galyov, E. E. ( 1998; ). Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29, 883–891.[CrossRef]
    [Google Scholar]
  54. Zhou, D. & Galan, J. ( 2001; ). Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3, 1293–1298.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/006726-0
Loading
/content/journal/micro/10.1099/mic.0.2006/006726-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error