1887

Abstract

The goal of this study was to characterize the KIM OmpX protein. spp. provide a model for studying several virulence processes including attachment to, and internalization by, host cells. For and , Ail, YadA and Inv, have been implicated in these processes. In YadA and Inv are inactivated. Genomic analysis of two strains revealed four loci with sequence homology to Ail. One of these genes, designated y1324 in the KIM database, encodes a protein designated OmpX. The mature protein has a predicted molecular mass of 17.47 kDa, shares approximately 70 % sequence identity with Ail, and has an identical homologue, designated Ail, in the CO92 database. The present study compared the KIM6 parental strain with a mutant derivative having an engineered disruption of the OmpX structural gene. The parental strain (and a merodiploid control strain) expressed OmpX at 28 and 37 °C, and the protein was detectable throughout all phases of growth. OmpX was required for efficient adherence to, and internalization by, cultured HEp-2 cell monolayers and conferred resistance to the bactericidal effect of human serum. Deletion of resulted in a significantly reduced autoaggregation phenotype and loss of pellicle formation . These results suggest that OmpX shares functional homology with Ail in adherence, internalization into epithelial cells and serum resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005694-0
2007-09-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2941.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005694-0&mimeType=html&fmt=ahah

References

  1. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795
    [Google Scholar]
  2. Bliska J. B., Falkow S.. 1992; Bacterial resistance to complement killing mediated by the Ail protein of Yersinia enterocolitica. Proc Natl Acad Sci U S A89:3561–3565
    [Google Scholar]
  3. Bobrov A. G., Geoffroy V. A., Perry R. D.. 2002; Yersiniabactin production requires the thioesterase domain of HMWP2 and YbtD, a putative phosphopantetheinylate transferase. Infect Immun70:4204–4214
    [Google Scholar]
  4. Bockmann R. A., Caflisch A.. 2005; Spontaneous formation of detergent micelles around the outer membrane protein OmpX. Biophys J88:3191–3204
    [Google Scholar]
  5. Caspi R., Foerster H., Fulcher C. A., Hopkinson R., Ingraham J., Kaipa P., Krummenacker M., Paley S., Pick J.. other authors 2006; MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res34:D511–D516
    [Google Scholar]
  6. Chen J. M., German G. J., Alexander D. C., Ren H., Tan T., Liu J.. 2006; Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol188:633–641
    [Google Scholar]
  7. Cirillo D. M., Heffernan E. J., Wu L., Harwood J., Fierer J., Guiney D. G.. 1996; Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion. Infect Immun64:2019–2023
    [Google Scholar]
  8. Cowan C., Jones H. A., Kaya Y. H., Perry R. D., Straley S. C.. 2000; Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect Immun68:4523–4530
    [Google Scholar]
  9. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645
    [Google Scholar]
  10. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N.. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol172:6568–6572
    [Google Scholar]
  11. Dupont M., De E., Chollet R., Chevalier J., Pages J. M.. 2004; Enterobacter aerogenes OmpX, a cation-selective channel mar- and osmo-regulated. FEBS Lett569:27–30
    [Google Scholar]
  12. Dziewanowska K., Carson A. R., Patti J. M., Deobald C. F., Bayles K. W., Bohach G. A.. 2000; Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun68:6321–6328
    [Google Scholar]
  13. Friedman L., Kolter R.. 2004; Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol51:675–690
    [Google Scholar]
  14. Gasteiger E. H. C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., Bairoch A.. 2005; Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook pp571–607 Edited by Walker J. M. Totowa, NJ: Humana Press;
  15. Gay P., Le Coq D., Steinmetz M., Ferrari E., Hoch J. A.. 1983; Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol153:1424–1431
    [Google Scholar]
  16. Hare J. M., McDonough K. A.. 1999; High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J Bacteriol181:4896–4904
    [Google Scholar]
  17. Heffernan E. J., Harwood J., Fierer J., Guiney D.. 1992a; The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J Bacteriol174:84–91
    [Google Scholar]
  18. Heffernan E. J., Reed S., Hackett J., Fierer J., Roudier C., Guiney D.. 1992b; Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck. J Clin Invest90:953–964
    [Google Scholar]
  19. Heffernan E. J., Wu L., Louie J., Okamoto S., Fierer J., Guiney D. G.. 1994; Specificity of the complement resistance and cell association phenotypes encoded by the outer membrane protein genes rck from Salmonella typhimurium and ail from Yersinia enterocolitica. Infect Immun62:5183–5186
    [Google Scholar]
  20. Joshua G. W., Guthrie-Irons C., Karlyshev A. V., Wren B. W.. 2006; Biofilm formation in Campylobacter jejuni. Microbiology152:387–396
    [Google Scholar]
  21. Karp P. D., Ouzounis C. A., Moore-Kochlacs C., Goldovsky L., Kaipa P., Ahrén D., Tsoka S., Darzentas N., Kunin V., López-Bigas N.. 2005; Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res33:6083–6089
    [Google Scholar]
  22. Katayama H., Nagasu T., Oda Y.. 2001; Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom15:1416–1421
    [Google Scholar]
  23. Kukkonen M., Suomalainen M., Kyllonen P., Lahteenmaki K., Lang H., Virkola R., Helander I. M., Holst O., Korhonen T. K.. 2004; Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol Microbiol51:215–225
    [Google Scholar]
  24. Kukleva L. M., Zadnova S. P., Shcherbakov A. A., Protsenko O. A.. 2000; The role of the protein with molecular weight of 22 kD in the phagocytosis of vaccine strain of Yersinia pestis EV. Zh Mikrobiol Epidemiol Immunobiol55–58
    [Google Scholar]
  25. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  26. Lahteenmaki K., Virkola R., Saren A., Emody L., Korhonen T. K.. 1998; Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun66:5755–5762
    [Google Scholar]
  27. Lahteenmaki K., Kukkonen M., Korhonen T. K.. 2001a; The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett504:69–72
    [Google Scholar]
  28. Lahteenmaki K., Kuusela P., Korhonen T. K.. 2001b; Bacterial plasminogen activators and receptors. FEMS Microbiol Rev25:531–552
    [Google Scholar]
  29. Lahteenmaki K., Kukkonen M., Jaatinen S., Suomalainen M., Soranummi H., Virkola R., Lang H., Korhonen T. K.. 2003; Yersinia pestis Pla has multiple virulence-associated functions. Adv Exp Med Biol529:141–145
    [Google Scholar]
  30. Laird W. J., Cavanaugh D. C.. 1980; Correlation of autoagglutination and virulence of Yersiniae. J Clin Microbiol11:430–432
    [Google Scholar]
  31. Lee K., Wang T., Paszczynski A. J., Daoud S. S.. 2006; Expression proteomics to p53 mutation reactivation with PRIMA-1 in breast cancer cells. Biochem Biophys Res Commun349:1117–1124
    [Google Scholar]
  32. Leigh S. A., Forman S., Perry R. D., Straley S. C.. 2005; Unexpected results from the application of signature-tagged mutagenesis to identify Yersinia pestis genes required for adherence and invasion. Microb Pathog38:259–266
    [Google Scholar]
  33. Lindler L. E., Klempner M. S., Straley S. C.. 1990; Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun58:2569–2577
    [Google Scholar]
  34. Liu F., Chen H., Galvan E. M., Lasaro M. A., Schifferli D. M.. 2006; Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells. Infect Immun74:5636–5644
    [Google Scholar]
  35. McEvedy C.. 1988; The bubonic plague. Sci Am258:118–123
    [Google Scholar]
  36. Mecsas J., Welch R., Erickson J. W., Gross C. A.. 1995; Identification and characterization of an outer membrane protein, OmpX, in Escherichia coli that is homologous to a family of outer membrane proteins including Ail of Yersinia enterocolitica. J Bacteriol177:799–804
    [Google Scholar]
  37. Miller V. L., Falkow S.. 1988; Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun56:1242–1248
    [Google Scholar]
  38. Miller S. I., Kukral A. M., Mekalanos J. J.. 1989; A two-component regulatory system ( phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A86:5054–5058
    [Google Scholar]
  39. Miller V. L., Bliska J. B., Falkow S.. 1990; Nucleotide sequence of the Yersinia enterocolitica ail gene and characterization of the Ail protein product. J Bacteriol172:1062–1069
    [Google Scholar]
  40. Miller V. L., Beer K. B., Heusipp G., Young B. M., Wachtel M. R.. 2001; Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol41:1053–1062
    [Google Scholar]
  41. Ngampasutadol J., Ram S., Blom A. M., Jarva H., Jerse A. E., Lien E., Goguen J., Gulati S., Rice P. A.. 2005; Human C4b-binding protein selectively interacts with Neisseria gonorrhoeae and results in species-specific infection. Proc Natl Acad Sci U S A102:17142–17147
    [Google Scholar]
  42. Nielsen H., Krogh A.. 1998; Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol6:122–130
    [Google Scholar]
  43. Pierson D. E.. 1994; Mutations affecting lipopolysaccharide enhance Ail-mediated entry of Yersinia enterocolitica into mammalian cells. J Bacteriol176:4043–4051
    [Google Scholar]
  44. Pierson D. E., Falkow S.. 1993; The ail gene of Yersinia enterocolitica has a role in the ability of the organism to survive serum killing. Infect Immun61:1846–1852
    [Google Scholar]
  45. Podladchikova O. N., Rykova V. A.. 2006; Identification of the autoagglutination factor of Hms cells of the plague agent. Mol Gen Mikrobiol Virusol25–29
    [Google Scholar]
  46. Prior J. L., Hitchen P. G., Williamson D. E., Reason A. J., Morris H. R., Dell A., Wren B. W., Titball R. W.. 2001; Characterization of the lipopolysaccharide of Yersinia pestis. Microb Pathog30:49–57
    [Google Scholar]
  47. Rebeil R., Ernst R. K., Jarrett C. O., Adams K. N., Miller S. I., Hinnebusch B. J.. 2006; Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol188:1381–1388
    [Google Scholar]
  48. Rosqvist R., Skurnik M., Wolf-Watz H.. 1988; Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature334:522–524
    [Google Scholar]
  49. Schembri M. A., Kjaergaard K., Klemm P.. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol48:253–267
    [Google Scholar]
  50. Seo K. S., Lee S. U., Park Y. H., Davis W. C., Fox L. K., Bohach G. A.. 2007; Long-term staphylococcal enterotoxin C1 exposure induces soluble factor-mediated immunosuppression by bovine CD4+ and CD8+ T cells. Infect Immun75:260–269
    [Google Scholar]
  51. Shaffer J., Goldin M.. 1974; Clinical Diagnosis by Laboratory Methods, 15th edn. Philadelphia, PA: W.B. Saunders Company;
  52. Shevchenko A., Wilm M., Vorm O., Mann M.. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem68:850–858
    [Google Scholar]
  53. Simonet M., Riot B., Fortineau N., Berche P.. 1996; Invasin production by Yersinia pestis is abolished by insertion of an IS 200-like element within the inv gene. Infect Immun64:375–379
    [Google Scholar]
  54. Skurnik M., Peippo A., Ervela E.. 2000; Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O: 1b. Mol Microbiol37:316–330
    [Google Scholar]
  55. Smith M. J.. 2000; Genetic regulation of type III secretion systems in Yersinia enterocolitica. p148 PhD thesis University of Idaho;
  56. Sodeinde O. A., Subrahmanyam Y. V., Stark K., Quan T., Bao Y., Goguen J. D.. 1992; A surface protease and the invasive character of plague. Science258:1004–1007
    [Google Scholar]
  57. Stoorvogel J., van Bussel M. J., Tommassen J., van de Klundert J. A.. 1991; Molecular characterization of an Enterobacter cloacae outer membrane protein (OmpX. J Bacteriol173:156–160
    [Google Scholar]
  58. Surgalla M. J., Beesley E. D.. 1969; Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol18:834–837
    [Google Scholar]
  59. Titball R. W., Williamson E. D.. 2004; Yersinia pestis (plague) vaccines. Expert Opin Biol Ther4:965–973
    [Google Scholar]
  60. Vandenbosch J. L., Rabert D. K., Jones G. W.. 1987; Plasmid-associated resistance of Salmonella typhimurium to complement activated by the classical pathway. Infect Immun55:2645–2652
    [Google Scholar]
  61. Wren B. W.. 2003; The yersiniae – a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol1:55–64
    [Google Scholar]
  62. Yang Y., Merriam J. J., Mueller J. P., Isberg R. R.. 1996; The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun64:2483–2489
    [Google Scholar]
  63. Zhou D., Han Y., Song Y., Huang P., Yang R.. 2004; Comparative and evolutionary genomics of Yersinia pestis. Microbes Infect6:1226–1234
    [Google Scholar]
  64. Zietz B. P., Dunkelberg H.. 2004; The history of the plague and the research on the causative agent Yersinia pestis. Int J Hyg Environ Health207:165–178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005694-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005694-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error