1887

Abstract

Flagellar arrangement is a highly conserved feature within bacterial species. However, only a few genes regulating cell flagellation have been described in polar flagellate bacteria. This report demonstrates that the arrangement of flagella in the peritrichous flagellate is controlled by . Disruption of in led to a reduction in the number of flagella from 10–12 to 1–3 filaments per cell in the insertion mutant MP06. Moreover, compared to the parental strain, MP06 exhibited: (i) shorter smooth swimming phases, causing reduced swimming motility but not affecting chemotaxis; (ii) complete inhibition of swarming motility, as differentiated swarm cells were never detected; (iii) an increased amount of extracellular proteins; and (iv) differential export of virulence determinants, such as haemolysin BL (HBL), phosphatidylcholine-preferring phospholipase C (PC-PLC) and non-haemolytic enterotoxin (NHE). Introduction of a plasmid harbouring (pDG) into MP06 completely restored the wild-type phenotype in the complemented strain MP07. was found to constitute a monocistronic transcriptional unit and its overexpression did not produce abnormal features in the wild-type background. Characterization of a mutant (MP05) carrying a partial deletion indicated that the last C-terminal domain of FlhF is involved in protein export while not required for flagellar arrangement and motility behaviour. Taken together, these data suggest that FlhF is a promising candidate for connecting diverse cellular functions, such as flagellar arrangement, motility behaviour, pattern of protein secretion and virulence phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005553-0
2007-08-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2541.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005553-0&mimeType=html&fmt=ahah

References

  1. Aizawa, S. I. & Kubori, T. ( 1998; ). Bacterial flagellation and cell division. Genes Cells 3, 625–634.[CrossRef]
    [Google Scholar]
  2. Allison, C. & Hughes, C. ( 1991; ). Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75, 403–422.
    [Google Scholar]
  3. Beecher, D. J. & Wong, A. C. L. ( 1994; ). Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl Environ Microbiol 60, 1646–1651.
    [Google Scholar]
  4. Bouillaut, L., Ramarao, N., Buisson, C., Gilois, N., Gohar, M., Lereclus, D. & Nielsen-LeRoux, C. ( 2005; ). FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl Environ Microbiol 71, 8903–8910.[CrossRef]
    [Google Scholar]
  5. Callegan, M. C., Novosad, B. D., Ramirez, R., Ghelardi, E. & Senesi, S. ( 2006; ). Role of swarming migration in the pathogenesis of Bacillus endophthalmitis. Invest Ophthalmol Vis Sci 47, 4461–4467.[CrossRef]
    [Google Scholar]
  6. Calvio, C., Celandroni, F., Ghelardi, E., Amati, G., Salvetti, S., Ceciliani, F., Galizzi, A. & Senesi, S. ( 2005; ). Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J Bacteriol 187, 5356–5366.[CrossRef]
    [Google Scholar]
  7. Carpenter, P. B., Hanlon, D. W. & Ordal, G. W. ( 1992; ). flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol Microbiol 6, 2705–2713.[CrossRef]
    [Google Scholar]
  8. Correa, N. E., Peng, F. & Klose, K. E. ( 2005; ). Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol 187, 6324–6332.[CrossRef]
    [Google Scholar]
  9. Dasgupta, N., Arora, S. K. & Ramphal, R. ( 2000; ). fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 182, 357–364.[CrossRef]
    [Google Scholar]
  10. Fraser, G. M. & Hughes, C. ( 1999; ). Swarming motility. Curr Opin Microbiol 2, 630–635.[CrossRef]
    [Google Scholar]
  11. Ghelardi, E., Celandroni, F., Salvetti, S., Beecher, D. J., Gominet, M., Lereclus, D., Wong, A. C. L. & Senesi, S. ( 2002; ). Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J Bacteriol 184, 6424–6433.[CrossRef]
    [Google Scholar]
  12. Givskov, M. & Molin, S. ( 1993; ). Secretion of Serratia liquefaciens phospholipase from Escherichia coli. Mol Microbiol 8, 229–242.[CrossRef]
    [Google Scholar]
  13. Gygi, D., Bailey, M. J., Allison, C. & Hughes, C. ( 1995; ). Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Mol Microbiol 15, 761–769.
    [Google Scholar]
  14. Halic, M. & Beckmann, R. ( 2005; ). The signal recognition particle and its interactions during protein targeting. Curr Opin Struct Biol 15, 116–125.[CrossRef]
    [Google Scholar]
  15. Harshey, R. M. & Matsuyama, T. ( 1994; ). Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91, 8631–8635.[CrossRef]
    [Google Scholar]
  16. Helgason, E., Økstad, O. A., Caugant, D. A., Johansen, H. A., Fouet, A., Mock, M., Hegna, I. & Kolstø, A.-B. ( 2000; ). Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66, 2627–2630.[CrossRef]
    [Google Scholar]
  17. Hendrixson, D. R. & DiRita, V. J. ( 2003; ). Transcription of σ 54-dependent but not σ 28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50, 687–702.[CrossRef]
    [Google Scholar]
  18. Hueck, C. J. ( 1998; ). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379–433.
    [Google Scholar]
  19. Kearns, D. B. & Losick, R. ( 2003; ). Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49, 581–590.
    [Google Scholar]
  20. Kim, Y. K. & McCarter, L. ( 2000; ). Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. J Bacteriol 182, 3693–3704.[CrossRef]
    [Google Scholar]
  21. Konkel, M. E., Klena, J. D., Rivera-Amill, V., Monteville, M. R., Biswas, D., Raphael, B. & Mickelson, J. ( 2004; ). Secretion of virulence proteins from Campylobacter jejuni is dependent on functional flagellar export apparatus. J Bacteriol 186, 3296–3303.[CrossRef]
    [Google Scholar]
  22. Kusumoto, A., Kamisaka, K., Yakushi, T., Terashima, H., Shinohara, A. & Homma, M. ( 2006; ). Regulation of polar flagella number by the flhF and flhG genes in Vibrio alginolyticus. J Biochem (Tokyo) 139, 113–121.[CrossRef]
    [Google Scholar]
  23. Lereclus, D., Agaisse, H., Gominet, M. & Chaufaux, J. ( 1995; ). Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Biotechnology (N Y) 13, 67–71.[CrossRef]
    [Google Scholar]
  24. McCarter, L. ( 1999; ). The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol 1, 51–57.
    [Google Scholar]
  25. Minamino, T. & Macnab, R. M. ( 1999; ). Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181, 1388–1394.
    [Google Scholar]
  26. Murray, T. S. & Kazmierczak, B. I. ( 2006; ). FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 188, 6995–7004.[CrossRef]
    [Google Scholar]
  27. Niehus, E., Gressmann, H., Ye, F., Schlapbach, R., Dehio, M., Dehio, C., Stack, A., Meyer, T. F., Suerbaum, S. & Josenhans, C. ( 2004; ). Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Mol Microbiol 52, 947–961.[CrossRef]
    [Google Scholar]
  28. O'Rear, J., Alberti, L. & Harshey, R. M. ( 1992; ). Mutations that impair swarming motility in Serratia marcescens 274 include but are not limited to those affecting chemotaxis or flagellar function. J Bacteriol 174, 6125–6137.
    [Google Scholar]
  29. Overbeek, R., Larsen, N., Walunas, T., D'Souza, M., Pusch, G., Selkov, E., Jr, Liolios, K., Joukov, V., Kaznadzey, D. & other authors ( 2003; ). The ERGO genome analysis and discovery system. Nucleic Acids Res 31, 164–171.[CrossRef]
    [Google Scholar]
  30. Pandza, S., Baetens, M., Park, C. H., Au, T., Keyhan, M. & Matin, A. ( 2000; ). The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol Microbiol 36, 414–423.[CrossRef]
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Senesi, S., Celandroni, F., Salvetti, S., Beecher, D. J., Wong, A. C. L. & Ghelardi, E. ( 2002; ). Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology 148, 1785–1794.
    [Google Scholar]
  33. Servant, F., Bru, C., Carrere, S., Courcelle, E., Gouzy, J., Peyruc, D. & Kahn, D. ( 2002; ). ProDom: automated clustering of homologous domains. Brief Bioinform 3, 246–251.[CrossRef]
    [Google Scholar]
  34. Sijbrandi, R., Urbanus, M. L., ten Hagen-Jongman, C. M., Bernstein, H. D., Oudega, B., Otto, B. R. & Luirink, J. ( 2003; ). Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J Biol Chem 278, 4654–4659.[CrossRef]
    [Google Scholar]
  35. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. & Klenk, D. C. ( 1985; ). Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76–85.[CrossRef]
    [Google Scholar]
  36. Stothard, P., Van Domselaar, G., Shrivastava, S., Guo, A., O'Neill, B., Cruz, J., Ellison, M. & Wishart, D. S. ( 2005; ). BacMap: an interactive picture atlas of annotated bacterial genomes. Nucleic Acids Res 33, D317–D320.
    [Google Scholar]
  37. Stragier, P., Bonamy, C. & Karmazyn-Campelli, C. ( 1988; ). Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell 52, 697–704.[CrossRef]
    [Google Scholar]
  38. Warth, A. D. ( 1980; ). Heat stability of Bacillus cereus enzymes within spores and in extracts. J Bacteriol 143, 27–34.
    [Google Scholar]
  39. Young, G. M., Schmiel, D. H. & Miller, V. L. ( 1999a; ). A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96, 6456–6461.[CrossRef]
    [Google Scholar]
  40. Young, G. M., Smith, M. J., Minnich, S. A. & Miller, V. L. ( 1999b; ). The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility and swarming motility. J Bacteriol 181, 2823–2833.
    [Google Scholar]
  41. Zanen, G., Antelmann, H., Westers, H., Hecker, M., van Dijl, J. M. & Quax, W. J. ( 2004; ). FlhF, the third signal recognition particle-GTPase of Bacillus subtilis, is dispensable for protein secretion. J Bacteriol 186, 5956–5960.[CrossRef]
    [Google Scholar]
  42. Zanen, G., Antelmann, H., Meima, R., Jongbloed, J. D. H., Kolkman, M., Hecker, M., van Dijl, J. M. & Quax, W. J. ( 2006; ). Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics 6, 3636–3648.[CrossRef]
    [Google Scholar]
  43. Zuberi, A. R., Ying, C., Bischoff, D. S. & Ordal, G. W. ( 1991; ). Gene-protein relationships in the flagellar hook-basal body complex of Bacillus subtilis: sequences of the flgB, flgC, flgG, fliE and fliF genes. Gene 101, 23–31.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005553-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005553-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error