1887

Abstract

Mitogen-activated protein (MAP) kinases modulate morphological and genetic processes, which determine cell fate. The gene encodes a MAP kinase of and its deletion promotes an unusual conidiation phenotype in submerged culture. Here, it is reported that the morphology, physiology and expression of genes encoding cell wall proteins from are significantly affected by Tvk1. Morphological changes were evident in the cell walls of aerial conidia produced by a MAPK null mutant when compared to those produced by the wild-type. Unexpectedly, conidia produced in submerged culture by the Δ strain were highly hydrophobic, whereas in aerial conidia hydrophobicity was severely reduced. In addition, the Δ strain was unable to break the liquid–air interface when the fungus grew in rich medium; however, when it grew in minimal medium the fungus produced large filaments which were much more efficient at breaking the interface than the wild-type. Through cDNA subtractive hybridization between the wild-type and Δ grown in submerged culture, five genes encoding hydrophobin-like proteins and two additional genes encoding cell wall proteins were identified. Four hydrophobin-encoding genes (, , and ) and a gene encoding a clock-controlled-like protein (-/) were upregulated in Δ, whereas genes encoding a cell wall protein () and an additional hydrophobin () were absent in the mutant strain. Clear differences in gene expression were shown during conidiation and emergence from the liquid–air interface, suggesting different functions of the corresponding proteins in these two phenomena. The results support a model in which Tvk1 regulates morphology and genes encoding cell wall proteins during development of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005462-0
2007-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2137.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005462-0&mimeType=html&fmt=ahah

References

  1. Askolin, S., Nakari-Setala, T. & Tenkanen, M. ( 2001; ). Overproduction, purification, and characterization of the Trichoderma reesei hydrophobin HFBI. Appl Microbiol Biotechnol 57, 124–130.[CrossRef]
    [Google Scholar]
  2. Askolin, S., Penttilä, M., Wösten, H. A. B. & Nakari-Setala, T. ( 2005; ). The Trichoderma reesei hydrophobin genes hfb1 and hfb2 have diverse functions in fungal development. FEMS Microbiol Lett 253, 281–288.[CrossRef]
    [Google Scholar]
  3. Bailey, M. J., Askolin, S., Horhammer, N., Tenkanen, M., Linder, M., Penttilä, M. & Nakari-Setala, T. ( 2002; ). Process technological effects of deletion and amplification of hydrophobins I and II in transformants of Trichoderma reesei. Appl Microbiol Biotechnol 58, 721–727.[CrossRef]
    [Google Scholar]
  4. Banno, S., Ochiai, N., Noguchi, R., Kimura, M., Yamaguchi, I., Kanzaki, S., Murayama, T. & Fujimura, M. ( 2005; ). A catalytic subunit of cyclic AMP-dependent protein kinase, PKAC-1, regulates asexual differentiation in Neurospora crassa. Genes Genet Syst 80, 25–34.[CrossRef]
    [Google Scholar]
  5. Brunner, K., Peterbauer, C. K., Mach, R. L., Lorito, M., Zeilinger, S. & Kubicek, C. P. ( 2003; ). The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43, 289–295.[CrossRef]
    [Google Scholar]
  6. de Vries, O. M., Moore, S., Arntz, C., Wessels, J. G. & Tudzynski, P. ( 1999; ). Identification and characterization of a tri-partite hydrophobin from Claviceps fusiformis. A novel type of class II hydrophobin. Eur J Biochem 262, 377–385.[CrossRef]
    [Google Scholar]
  7. Djonović, S., Pozo, M. J., Dangott, L. J., Howell, C. R. & Kenerley, C. M. ( 2006; ). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19, 838–853.[CrossRef]
    [Google Scholar]
  8. Fuchs, U., Czymmek, K. & Sweigard, J. A. ( 2004; ). Five hydrophobin genes in Fusarium verticillioides include two required for microconidial chain formation. Fungal Genet Biol 41, 852–864.[CrossRef]
    [Google Scholar]
  9. Herrera-Estrella, A. & Chet, I. ( 2003; ). The biological control agent Trichoderma: from fundamentals to applications. In Handbook of Fungal Biotechnology, pp. 147–156. Edited by D. Arora. New York: Marcel Dekker.
  10. Kays, A. M., Rowley, P. S., Baasiri, R. A. & Borkovich, K. A. ( 2000; ). Regulation of conidiation and adenylyl cyclase levels by the Gα protein GNA-3 in Neurospora crassa. Mol Cell Biol 20, 7693–7705.[CrossRef]
    [Google Scholar]
  11. Kothe, G. O. & Free, S. J. ( 1998; ). The isolation and characterization of nrc-1 and nrc-2, two genes encoding protein kinases that control growth and development in Neurospora crassa. Genetics 149, 117–130.
    [Google Scholar]
  12. Linder, M. B., Silvia, G. R., Nakari-Setälä, T. & Penttilä, M. E. ( 2005; ). Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29, 877–896.[CrossRef]
    [Google Scholar]
  13. Mendoza-Mendoza, A., Pozo, M. J., Grzegorski, D., Martínez, P., García, J. M., Olmedo-Monfil, V., Cortés, C., Kenerley, C. & Herrera-Estrella, A. ( 2003; ). Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100, 15965–15970.[CrossRef]
    [Google Scholar]
  14. Mozes, N. & Rouxhet, P. G. ( 1987; ). Methods for measuring hydrophobicity of microorganisms. J Microbiol Methods 6, 99–112.[CrossRef]
    [Google Scholar]
  15. Muñoz, G., Agosin, E., Cotoras, M., San Martin, R. & Volpe, M. D. ( 1995; ). Comparison of aerial and submerged spore properties for Trichoderma harzianum. FEMS Microbiol Lett 125, 63–69.[CrossRef]
    [Google Scholar]
  16. Nakari-Setala, T., Aro, N., Ilmen, M., Muñoz, G., Kalkkinen, N. & Penttilä, M. ( 1997; ). Differential expression of the vegetative and spore-bound hydrophobins of Trichoderma reesei – cloning and characterization of the hfb2 gene. Eur J Biochem 248, 415–423.[CrossRef]
    [Google Scholar]
  17. Pascual, S., De Cal, A., Magan, N. & Melgarejo, P. ( 2000; ). Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. J Appl Microbiol 89, 847–853.[CrossRef]
    [Google Scholar]
  18. Puyesky, M., Benhamou, N., Noyola, P., Bauw, G., Ziv, T., van Montagu, M., Herrera-Estrella, A. & Horwitz, B. A. ( 1999; ). Developmental regulation of cmp1, a gene encoding a multidomain conidiospore surface protein of Trichoderma. Fungal Genet Biol 27, 88–99.[CrossRef]
    [Google Scholar]
  19. Rey, M., Ohno, S., Pintor-Toro, J. A., Llobell, A. & Benitez, T. ( 1998; ). Unexpected homology between inducible cell wall protein QID74 of filamentous fungi and BR3 salivary protein of the insect Chironomus. Proc Natl Acad Sci U S A 95, 6212–6216.[CrossRef]
    [Google Scholar]
  20. Rocha-Ramírez, V., Omero, C., Chet, I., Horwitz, B. A. & Herrera-Estrella, A. ( 2002; ). Trichoderma atroviride G-protein α subunit gene tga1 is involved in mycoparasitic, coiling and conidiation. Eukaryot Cell 1, 594–605.[CrossRef]
    [Google Scholar]
  21. Rosen, S., Yu, J. H. & Adams, T. H. ( 1999; ). The Aspergillus nidulans sfaD gene encodes a G protein β subunit that is required for normal growth and repression of sporulation. EMBO J 18, 5592–5600.[CrossRef]
    [Google Scholar]
  22. Sambrook, J. & Russell, D. ( 2001; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Soanes, D. M., Kershaw, M. J., Cooley, R. N. & Talbot, N. J. ( 2002; ). Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15, 1253–1267.[CrossRef]
    [Google Scholar]
  24. Talbot, N. J., Kershaw, M. J., Wakley, G. E., de Vries, O. M., Wessels, J. & Hamer, J. E. ( 1996; ). MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8, 985–999.[CrossRef]
    [Google Scholar]
  25. van Wetter, M. A., Schuren, F. H. J., Schuurs, T. A. & Wessels, J. G. H. ( 1996; ). Targeted mutation of the SC3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiol Lett 140, 265–269.
    [Google Scholar]
  26. Viterbo, A. & Chet, I. ( 2006; ). TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7, 249–258.[CrossRef]
    [Google Scholar]
  27. Wessels, J. G. H. ( 1994; ). Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32, 413–437.[CrossRef]
    [Google Scholar]
  28. Wösten, H. A. B. ( 2001; ). Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55, 625–646.[CrossRef]
    [Google Scholar]
  29. Wösten, H. A. B. & de Vocht, M. L. ( 2000; ). Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 1469, 79–86.[CrossRef]
    [Google Scholar]
  30. Wösten, H. A. B., Schuren, F. H. J. & Wessels, J. G. H. ( 1994a; ). Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13, 5848–5854.
    [Google Scholar]
  31. Wösten, H. A. B., Asgeirsdottir, S. A., Krook, J. H., Drenth, J. H. & Wessels, J. G. ( 1994b; ). The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur J Cell Biol 63, 122–129.
    [Google Scholar]
  32. Wösten, H. A. B., van Wetter, M. A., Lugones, L. G., van der Mei, H. C., Busscher, H. J. & Wessels, J. G. ( 1999; ). How a fungus escapes the water to grow into the air. Curr Biol 9, 85–88.[CrossRef]
    [Google Scholar]
  33. Yang, Q., Poole, S. I. & Borkovich, K. A. ( 2002; ). A G-protein beta subunit required for sexual and vegetative development and maintenance of normal G alpha protein levels in Neurospora crassa. Eukaryot Cell 1, 378–390.[CrossRef]
    [Google Scholar]
  34. Zhu, H., Nowrousian, M., Kupfer, D., Colot, H. V., Berrocal-Tito, G., Lai, H., Bell-Pedersen, D., Roe, B. A., Loros, J. J. & Dunlap, J. C. ( 2001; ). Analysis of expressed sequence tags from two starvations, time-of-day-specific libraries of Neurospora crassa reveals novel clock controlled genes. Genetics 157, 1057–1065.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005462-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005462-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error