1887

Abstract

In the current model of conjugal plasmid transfer in mycelium-forming streptomycetes, plasmid transfer by the FtsK-like TraB protein is followed by the subsequent spreading of the newly transferred plasmid within the neighbouring mycelial compartments. Several plasmid-encoded Spd proteins are involved in the plasmid spreading by an unknown mechanism. of the conjugative pSVH1 plasmid of was heterologously expressed in and , with a C-terminal His-tag-encoding sequence. Induction of -His expression affected viability in both species. The integral membrane protein SpdB2-His was eluted from the membrane fraction of with Triton X-100, and purified as a soluble protein by Ni-NTA affinity chromatography. Cross-linking experiments with glutaraldehyde showed that SpdB2-His formed oligomers. SpdB2-His had a nonspecific DNA-binding activity: while all types of dsDNA were bound, single-stranded M13-DNA was not recognized. The genes of the operon of pSVH1 were simultaneously expressed in with different affinity tags. While expression of StrepII-SpdB3 was not detected, Spd79-flag and SpdB2-His were localized in the membrane fraction of . In the absence of SpdB2, most of the Spd79-flag protein was found in the cytoplasmic fraction, indicating that SpdB2 affects localization of Spd79. Pulldown assays with StrepII-TraB protein of pSVH1 demonstrated that TraB interacted with SpdB2, suggesting that the septal DNA translocator TraB is also involved in intramycelial plasmid spreading.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005413-0
2007-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2976.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005413-0&mimeType=html&fmt=ahah

References

  1. Bibb, M. J., Ward, J. M., Kieser, T., Cohen, S. N. & Hopwood, D. A. ( 1981; ). Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet 184, 230–240.
    [Google Scholar]
  2. Brizzard, B. L., Chubet, R. G. & Vizard, D. L. ( 1994; ). Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. Biotechniques 16, 730–735.
    [Google Scholar]
  3. Bullock, W. O., Fernandez, J. M. & Short, M. J. ( 1987; ). XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5, 376–379.
    [Google Scholar]
  4. Click, E. M. & Webster, R. E. ( 1998; ). The TolQRA proteins are required for membrane insertion of the major capsid protein of the filamentous phage f1 during infection. J Bacteriol 180, 1723–1728.
    [Google Scholar]
  5. Flardh, K. ( 2003a; ). Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 49, 1523–1536.[CrossRef]
    [Google Scholar]
  6. Flardh, K. ( 2003b; ). Growth polarity and cell division in Streptomyces. Curr Opin Microbiol 6, 564–571.[CrossRef]
    [Google Scholar]
  7. Fong, J. H., Keating, A. E. & Singh, M. ( 2004; ). Predicting specificity in bZIP coiled-coil protein interactions. Genome Biol 5, R11 [CrossRef]
    [Google Scholar]
  8. Grohmann, E., Muth, G. & Espinosa, M. ( 2003; ). Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev 67, 277–301.[CrossRef]
    [Google Scholar]
  9. Hagège, J., Pernodet, J.-L., Sezonov, G., Gerbaud, C., Friedmann, A. & Guérineau, M. ( 1993; ). Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J Bacteriol 175, 5529–5538.
    [Google Scholar]
  10. Hopwood, D. A. ( 2006; ). Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40, 1–23.[CrossRef]
    [Google Scholar]
  11. Hopwood, D. A. & Kieser, T. ( 1993; ). Conjugative plasmids of streptomyces. In Bacterial Conjugation, pp. 293–311. Edited by D. B. Clewell. New York: Plenum.
  12. Hopwood, D. A. & Wright, H. M. ( 1973; ). Transfer of a plasmid between Streptomyces species. J Gen Microbiol 77, 187–195.[CrossRef]
    [Google Scholar]
  13. Hopwood, D. A., Kieser, T., Wright, H. M. & Bibb, M. J. ( 1983; ). Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol 129, 2257–2269.
    [Google Scholar]
  14. Hopwood, D. A., Chater, K. F. & Bibb, M. J. ( 1995; ). Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology 28, 65–102.
    [Google Scholar]
  15. Kataoka, M., Seki, T. & Yoshida, T. ( 1991; ). Regulation and function of the Streptomyces plasmid pSN22 genes involved in pock formation and inviability. J Bacteriol 173, 7975–7981.
    [Google Scholar]
  16. Kendall, K. J. & Cohen, S. N. ( 1987; ). Plasmid transfer in Streptomyces lividans: identification of a kil-kor system associated with the transfer region of pIJ101. J Bacteriol 169, 4177–4183.
    [Google Scholar]
  17. Kieser, T., Hopwood, D. A., Wright, H. M. & Thompson, C. J. ( 1982; ). pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185, 223–238.[CrossRef]
    [Google Scholar]
  18. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich, UK: John Innes Foundation.
  19. Kosono, S., Kataoka, M., Seki, T. & Yoshida, T. ( 1996; ). The TraB protein, which mediates the intermycelial transfer of the Streptomyces plasmid pSN22, has functional NTP-binding motifs and is localized to the cytoplasmic membrane. Mol Microbiol 19, 397–405.[CrossRef]
    [Google Scholar]
  20. Maas, R. M., Gotz, J., Wohlleben, W. & Muth, G. ( 1998; ). The conjugative plasmid pSG5 from Streptomyces ghanaensis DSM 2932 differs in its transfer functions from other Streptomyces rolling-circle-type plasmids. Microbiology 144, 2809–2817.[CrossRef]
    [Google Scholar]
  21. Pettis, G. S. & Cohen, S. N. ( 1994; ). Transfer of the pIJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer. Mol Microbiol 13, 955–964.[CrossRef]
    [Google Scholar]
  22. Pettis, G. S., Ward, N. & Schully, K. L. ( 2001; ). Expression characteristics of the transfer-related kilB gene product of Streptomyces plasmid pIJ101: implications for the plasmid spread function. J Bacteriol 183, 1339–1345.[CrossRef]
    [Google Scholar]
  23. Possoz, C., Ribard, C., Gagnat, J., Pernodet, J. L. & Guerineau, M. ( 2001; ). The integrative element pSAM2 from streptomyces: kinetics and mode of conjugal transfer. Mol Microbiol 42, 159–166.
    [Google Scholar]
  24. Reuther, J., Gekeler, C., Tiffert, Y., Wohlleben, W. & Muth, G. ( 2006a; ). Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol Microbiol 61, 436–446.[CrossRef]
    [Google Scholar]
  25. Reuther, J., Wohlleben, W. & Muth, G. ( 2006b; ). Modular architecture of the conjugative plasmid pSVH1 from Streptomyces venezuelae. Plasmid 55, 201–209.[CrossRef]
    [Google Scholar]
  26. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Servín-González, L., Sampieri, A., Cabello, J., Galván, L., Juárez, V. & Castro, C. ( 1995; ). Sequence and functional analysis of the Streptomyces phaeochromogenes plasmid pJV1 reveals a modular organization of Streptomyces plasmids that replicate by rolling circle. Microbiology 141, 2499–2510.[CrossRef]
    [Google Scholar]
  28. Smith, M. C., Burns, R. N., Wilson, S. E. & Gregory, M. A. ( 1999; ). The complete genome sequence of the streptomyces temperate phage straight phiC31: evolutionary relationships to other viruses. Nucleic Acids Res 27, 2145–2155.[CrossRef]
    [Google Scholar]
  29. Voss, S. & Skerra, A. ( 1997; ). Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10, 975–982.[CrossRef]
    [Google Scholar]
  30. Wilms, B., Hauck, A., Reuss, M., Syldatk, C., Mattes, R., Siemann, M. & Altenbuchner, J. ( 2001; ). High-cell-density fermentation for production of l-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73, 95–103.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005413-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005413-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error