1887

Abstract

Nicotine and some related alkaloids in tobacco and tobacco wastes are harmful to health and the environment, and a major environmental requirement is to remove them from tobacco and tobacco wastes. In this study, an isolated strain, S16, identified as biotype A, was used to investigate nicotine degradation. Possible intermediates were identified based on the results of NMR, Fourier-transform (FT)-IR and UV spectroscopy, GC-MS and high-resolution MS (HR-MS) analysis. The pathway of nicotine degradation in was proposed to be from nicotine to 2,5-dihydroxypyridine through the intermediates -methylmyosmine, 2′-hydroxynicotine, pseudooxynicotine, 3-pyridinebutanal,C-oxo, 3-succinoylpyridine and 6-hydroxy-3-succinoylpyridine. -Methylmyosmine, 2,5-dihydroxypyridine and succinic acid were detected and satisfactorily verified for the first time as intermediates of nicotine degradation. In addition, an alcohol compound, 1-butanone,4-hydroxy-1-(3-pyridinyl), was found to be a novel product of nicotine degradation. These findings provide new insights into the microbial metabolism of nicotine and the environmentally friendly route of nicotine degradation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005223-0
2007-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1556.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005223-0&mimeType=html&fmt=ahah

References

  1. American Cancer Society 2005 Cancer Facts and Figures 2005 pp 40–45 Atlanta, GA: American Cancer Society;
    [Google Scholar]
  2. Behrman E. J., Stainier R. Y. 1957; The bacterial oxidation of nicotinic acid. J Biol Chem 228:923–945
    [Google Scholar]
  3. Benowitz N. L., Henningfield J. E. 1994; Establishing a nicotine threshold for addiction. N Engl J Med 331:123–125 [CrossRef]
    [Google Scholar]
  4. Bradshaw C. W., Fu H., Shen G. J., Wong C.-H. 1992a; A Pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis. J Org Chem 57:1526–1532 [CrossRef]
    [Google Scholar]
  5. Bradshaw C. W., Hummel W., Wong C.-H. 1992b; Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis. J Org Chem 57:1532–1536 [CrossRef]
    [Google Scholar]
  6. Brandsch R., Hinkkanen A. E., Decker K. 1982; Plasmid-mediated nicotine degradation in Arthrobacter oxidans. Arch Microbiol 132:26–30 [CrossRef]
    [Google Scholar]
  7. Cai Z. W., Lee F. S. C., Wang X. R., Yu W. J. 2002; A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs. J Mass Spectrom 37:1013–1024 [CrossRef]
    [Google Scholar]
  8. Civilini M., Domenis C., Sebastianutto N., de Berfoldi M. 1997; Nicotine decontamination of tobacco agro-industrial waste and its degradation by micro-organisms. Waste Man Res 15:349–358 [CrossRef]
    [Google Scholar]
  9. Dai V. D., Decker K., Sund H. 1968; Purification and properties of l-6-hydroxynicotine oxidase. Eur J Biochem 4:95–102 [CrossRef]
    [Google Scholar]
  10. Debrauwer L. 2000; Use of LC-MS/MS for xenobiotic metabolism studies in animals. Analusis 28:914–920 [CrossRef]
    [Google Scholar]
  11. Decker K., Bleeg H. 1965; Induction and purification of stereospecific nicotine oxidizing enzymes from Arthrobacter oxidans. Biochim Biophys Acta 105:313–324 [CrossRef]
    [Google Scholar]
  12. Decker K., Dai V. D. 1967; Mechanism and specificity of l- and d-6-hydroxynicotine oxidase. Eur J Biochem 3:132–138 [CrossRef]
    [Google Scholar]
  13. Gauthier J. J., Rittenberg S. C. 1971a; The metabolism of nicotinic acid. I. Purification and properties of 2,5-dihydryoxypyridine oxygenase from Pseudomonas putida N-9. J Biol Chem 246:3737–3742
    [Google Scholar]
  14. Gauthier J. J., Rittenberg S. C. 1971b; The metabolism of nicotinic acid. II. 2,5-Dihydryoxypyridine oxidation, product formation, and oxygen 18 incorporation. J Biol Chem 246:3743–3748
    [Google Scholar]
  15. Gherna R. L., Richardson S. H., Rittenberg S. C. 1965; The bacterial oxidation of nicotine. VI. The metabolism of 2,6-dihydroxypseudooxynicotine. J Biol Chem 240:3669–3674
    [Google Scholar]
  16. Hecht S. S. 1999; Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210 [CrossRef]
    [Google Scholar]
  17. Hecht S. S., Hochalter J. B., Villalta P. W., Murphy S. E. 2000; 2′-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: formation of a lung carcinogen precursor. Proc Natl Acad Sci U S A 97:12493–12497 [CrossRef]
    [Google Scholar]
  18. Henningfield J. E., Benowitz N. L., Slade J., Houston T. P., Davis R. M., Deitchman S. D. 1998; Reducing the addictiveness of cigarettes. Tob Control 7:281–293 [CrossRef]
    [Google Scholar]
  19. Holden C. 2001; Tobacco epidemic in China's future. Science 293:1761
    [Google Scholar]
  20. Holt J. G., Krieg N. R., Sneath P. H. A. 1994 Bergey's Manual of Determinative Bacteriology , 9th edn. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  21. Hummel W. 1999; Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol 17:487–492 [CrossRef]
    [Google Scholar]
  22. Hurh B., Yamane T., Nagasawa T. 1994; Purification and characterization of nicotinic acid dehydrogenase from Pseudomonas fluorescens TN5. J Ferment Bioeng 78:19–26 [CrossRef]
    [Google Scholar]
  23. Hylin J. W. 1959; The microbial degradation of nicotine. II. The mode of action of Achromobacter nicotinophagum. Arch Biochem Biophys 83:528–537 [CrossRef]
    [Google Scholar]
  24. Igoli G. L., Brandsch R. 2003; Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J Bacteriol 185:1976–1986 [CrossRef]
    [Google Scholar]
  25. Ishikawa M., Honda T., Yoshii H., Ikeda T., Iwabuchi H. 2004; Structure elucidation of novel metabolites of Gemfibrozil in dog: conjugation reaction of conjugated metabolites. J Mass Spectrom Soc Jpn 52:21–28 [CrossRef]
    [Google Scholar]
  26. Johnson J. 1994; Similarity analysis of rRNAs. In Methods for General and Molecular Bacteriology pp 683–670 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Kaiser J. P., Feng Y., Bollag J. M. 1996; Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60:483–498
    [Google Scholar]
  28. Kodama Y., Yamamoto H., Amano N., Amachi T. 1992; Reclassification of two strains of Arthrobacter oxidans and proposal of Arthrobacter nicotinovorans sp. nov. Int J Syst Bacteriol 42:234–239 [CrossRef]
    [Google Scholar]
  29. Mee B., Kelleher D., Frias J., Malone R., Tipton K. F., Henehan G. T., Windle H. J. 2005; Characterization of cinnamyl alcohol dehydrogenase of Helicobacter pylori . An aldehyde dismutating enzyme. FEBS J 272:1255–1264 [CrossRef]
    [Google Scholar]
  30. Nakano H., Wieser M., Hurh B., Kawai T., Yoshida T., Yamane T., Nagasawa T. 1999; Purification, characterization and gene cloning of 6-hydroxynicotinate 3-monooxygenase from Pseudomonas fluorescens TN5. Eur J Biochem 260:120–126 [CrossRef]
    [Google Scholar]
  31. Novotny T. E., Zhao F. 1999; Consumption and production waste: another externality of tobacco use. Tob Control 8:75–80 [CrossRef]
    [Google Scholar]
  32. Palleroni N. J. 1984; Pseudomonas . In Bergey's Manual of Systematic Bacteriology vol. 1 pp 141–199 Edited by Krieg N. R., Holt J. G. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  33. Peng X., Taki H., Komukai S., Sekine M., Kanoh K., Kasai H., Choi S. K., Omata S., Tanikawa S. other authors 2006; Characterization of four Rhodococcus alcohol dehydrogenase genes responsible for the oxidation of aromatic alcohols. Appl Microbiol Biotechnol 71:824–832 [CrossRef]
    [Google Scholar]
  34. Roduit J. P., Wellig A., Kiener A. 1997; Renewable functionalized pyridines derived from microbial metabolites of the alkaloid ( S )-nicotine. Heterocycles 45:1687–1702 [CrossRef]
    [Google Scholar]
  35. Schenk S., Hoelz A., Krauß B., Decker K. 1998; Gene structures and properties of enzymes of the plasmid-encoded nicotine catabolism of Arthrobacter oxidans. J Mol Biol 284:1323–1329 [CrossRef]
    [Google Scholar]
  36. Schmid A., Dordick J. S., Hauer B., Kiener A., Wubbolts M., Witholt B. 2001; Industrial biocatalysis today and tomorrow. Nature 409:258–268 [CrossRef]
    [Google Scholar]
  37. Sguros P. L. 1955; Microbial transformations of the tobacco alkaloids. I. Cultural and morphological characteristics of a nicotinophile. J Bacteriol 69:28–37
    [Google Scholar]
  38. Spande T. F., Garraffo H. M., Edwards M. W., Yeh H. J. C., Pannell L., Daly J. W. 1992; Epibatidine: a novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J Am Chem Soc 114:3475–3478 [CrossRef]
    [Google Scholar]
  39. Tabuchi T. 1955; Microbial degradation of nicotine and nicotinic acid. III. Degradation of nicotine. 2. J Agric Chem Soc Jpn 29:222–225
    [Google Scholar]
  40. Tasaki Y., Yoshikawa H., Tamura H. 2006; Isolation and characterization of an alcohol dehydrogenase gene from the octylphenol polyethoxylate degrader Pseudomonas putida S-5. Biosci Biotechnol Biochem 70:1855–1863 [CrossRef]
    [Google Scholar]
  41. Thacker R., Rørvig O., Kahlon P., Gunsalus I. C. 1978; NIC, a conjugative nicotine-nicotinate degradative plasmid in Pseudomanas convexa. J Bacteriol 135:289–290
    [Google Scholar]
  42. Wada E., Yamasaki K. 1954; Degradation of nicotine by soil bacteria. J Am Chem Soc 76:155–157 [CrossRef]
    [Google Scholar]
  43. Wang S. N., Xu P., Tang H. Z., Meng J., Liu X. L., Huang J., Chen H., Du Y., Blankespoor H. D. 2004; Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. Biotechnol Lett 26:1493–1496 [CrossRef]
    [Google Scholar]
  44. Wang S. N., Xu P., Tang H. Z., Meng J., Liu X. L., Ma C. Q. 2005; ‘Green’ route to 6-hydroxy-3-succinoyl-pyridine from ( S )-nicotine of tobacco waste by whole cells of a Pseudomonas sp. Environ Sci Technol 39:6877–6880 [CrossRef]
    [Google Scholar]
  45. Xun L., Webster C. M. 2004; A monooxygenase catalyzes sequential dechlorinations of 2,4,6-trichlorophenol by oxidative and hydrolytic reactions. J Biol Chem 279:6696–6700
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005223-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005223-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error