1887

Abstract

cells growing in medium containing sugars accumulate glycogen in the early exponential-growth phase, and start to degrade this polymer at entry into the stationary phase. In a first attempt to investigate glycogen degradation, the gene, which encodes a protein with 46 % identity to the isoamylase-type debranching enzyme of , was analysed, expressed and inactivated The purified gene product showed debranching activity towards glycogen, amylopectin and starch. Chromosomal inactivation of in wild-type led to slower growth and to a higher intracellular glycogen pool throughout growth, when compared to those in the parental strain. This result suggests that glycogen synthesis and degradation occur simultaneously in . When exposed to hyperosmotic shock, rapidly degrades glycogen, and at the same time, synthesizes the osmoprotectant trehalose. The mutant, however, synthesized only minor amounts of trehalose throughout cultivation, and its growth ceased after hyperosmotic shock. Taken together, the results indicate that the gene product is essential for glycogen degradation in , that glycogen is constantly recycled in , and that it serves as a carbon store for trehalose synthesis via the TreYZ pathway after hyperosmotic shock.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005181-0
2007-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2212.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005181-0&mimeType=html&fmt=ahah

References

  1. Abad, M. C., Binderup, K., Rios-Steiner, J., Arni, R. K., Preiss, J. & Geiger, J. H. ( 2002; ). The X-ray crystallographic structure of Escherichia coli branching enzyme. J Biol Chem 277, 42164–42170.[CrossRef]
    [Google Scholar]
  2. Alonso-Casajús, N., Dauvillée, D., Viale, A. M., Munoz, F. J., Baroja-Fernandez, E., Moran-Zorzano, M. T., Eydallin, G., Ball, S. & Pozueto-Romero, J. ( 2006; ). Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol 188, 5266–5272.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Ball, S. G. & Morell, M. K. ( 2003; ). From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54, 207–233.[CrossRef]
    [Google Scholar]
  5. Ballicora, M. A., Iglesias, A. A. & Preiss, J. ( 2003; ). ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67, 213–225.[CrossRef]
    [Google Scholar]
  6. Belanger, A. E. & Hatfull, G. F. ( 1999; ). Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J Bacteriol 181, 6670–6678.
    [Google Scholar]
  7. Buschiazzo, A., Ugalde, J. E., Guerin, M. E., Shepard, W., Ugalde, R. A. & Alzari, P. M. ( 2004; ). Crystal structure of glycogen synthase: homologous enzymes catalyse glycogen synthesis and degradation. EMBO J 23, 3196–3205.[CrossRef]
    [Google Scholar]
  8. Carpinelli, J., Krämer, R. & Agosin, E. ( 2006; ). Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72, 1949–1955.[CrossRef]
    [Google Scholar]
  9. Cerdeno-Tarraga, A. M., Efstratiou, A., Dover, L. G., Holden, M. T. G., Pallen, M., Bentley, S. D., Besra, G. S., Churcher, C., James, K. D. & other authors ( 2003; ). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31, 6516–6523.[CrossRef]
    [Google Scholar]
  10. Cramer, A., Gerstmeir, R., Schaffer, S., Bott, M. & Eikmanns, B. J. ( 2006; ). Identification of RamA, a novel LuxT-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 188, 2554–2567.[CrossRef]
    [Google Scholar]
  11. Dauvillée, D., Kinderf, I. S., Zhongyi, L., Kosar-Hashemi, B., Samuel, M. S., Rampling, L., Ball, S. & Morell, M. K. ( 2005; ). Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187, 1465–1473.[CrossRef]
    [Google Scholar]
  12. De Smet, K. A. L., Weston, A., Brown, I. N., Young, D. B. & Robertson, B. D. ( 2000; ). Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146, 199–208.
    [Google Scholar]
  13. Dippel, R., Bergmiller, T., Böhm, A. & Boos, W. ( 2005; ). The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation. J Bacteriol 187, 8332–8339.[CrossRef]
    [Google Scholar]
  14. Eggeling, L. & Bott, M. ( 2005; ). Handbook of Corynebacterium glutamicum. Boca Raton, FL: CRC Press.
  15. Eikmanns, B. J., Metzger, M., Reinscheid, D., Kircher, M. & Sahm, H. ( 1991; ). Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34, 617–622.[CrossRef]
    [Google Scholar]
  16. Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Ludtke, K. U. & Sahm, H. ( 1994; ). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140, 1817–1828.[CrossRef]
    [Google Scholar]
  17. Fleischmann, R. D., Alland, D., Eisen, J. A., Carpenter, L., White, O., Peterson, J., DeBoy, R., Dodson, R., Gwinn, M. & other authors ( 2002; ). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184, 5479–5490.[CrossRef]
    [Google Scholar]
  18. Friedberg, F. & Rhodes, C. ( 1986; ). Cloning and characterization of the beta-amylase gene from Bacillus polymyxa. J Bacteriol 165, 819–824.
    [Google Scholar]
  19. Garnier, T., Eiglmeier, K., Camus, J.-C., Medina, N., Mansoor, H., Pryor, M., Duthoy, S., Grondin, S., Lacroix, C. & other authors ( 2003; ). The complete genome of Mycobacterium bovis. Proc Natl Acad Sci U S A 100, 7877–7882.[CrossRef]
    [Google Scholar]
  20. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  21. Horcajada, C., Guinovart, J. J., Fita, I. & Ferrer, J. C. ( 2006; ). Crystal structure of an archaeal glycogen synthase. J Biol Chem 281, 2923–2931.
    [Google Scholar]
  22. Iglesias, A. A. & Preiss, J. ( 1992; ). Bacterial glycogen and plant starch biosynthesis. Biochem Educ 20, 196–203.[CrossRef]
    [Google Scholar]
  23. Ikawa, K., Araki, H., Tsujino, Y., Hyashi, Y., Igarashi, K., Hatada, Y., Hagihara, H., Ozawa, T., Ozaki, K. & other authors ( 1998; ). Hyperexpression of the gene for a Bacillus α-amylase in Bacillus subtilis cells: enzymatic properties and crystallization of the recombinant enzyme. Biosci Biotechnol Biochem 62, 1720–1725.[CrossRef]
    [Google Scholar]
  24. Jeanningros, R., Creuzet-Sigal, N., Frixon, C. & Cattaneo, J. ( 1976; ). Purification and properties of a debranching enzyme from Escherichia coli. Biochim Biophys Acta 438, 186–199.[CrossRef]
    [Google Scholar]
  25. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, M., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  26. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  27. Liebl, W. ( 2005; ). Corynebacterium taxonomy. In Handbook of Corynebacterium glutamicum, pp. 9–34. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  28. Manners, D. J. ( 1991; ). Recent developments in our understanding of glycogen structure. Carbohydr Polym 16, 37–82.[CrossRef]
    [Google Scholar]
  29. Miller, G. L. ( 1959; ). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426–428.[CrossRef]
    [Google Scholar]
  30. Morbach, S. & Krämer, R. ( 2003; ). Impact of transport processes in the osmotic response of Corynebacterium glutamicum. J Biotechnol 104, 69–75.[CrossRef]
    [Google Scholar]
  31. Morbach, S. & Krämer, R. ( 2005; ). Osmoregulation. In Handbook of Corynebacterium glutamicum, pp. 417–435. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  32. Nishio, Y., Nakamura, Y., Kawarabayasi, Y., Usuda, Y., Kimura, E., Sugimoto, S., Matasui, K., Yamagishi, A., Kikuchi, H. & other authors ( 2003; ). Comparative genome sequence analysis of the amino acids replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13, 1572–1579.[CrossRef]
    [Google Scholar]
  33. Padilla, L., Morbach, S., Krämer, R. & Agosin, E. ( 2004; ). Impact of heterologous expression of Escherichia coli UDP-glucose pyrophosphorylase on trehalose and glycogen synthesis in Corynebacterium glutamicum. Appl Environ Microbiol 70, 3845–3854.[CrossRef]
    [Google Scholar]
  34. Preiss, J. ( 1984; ). Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38, 419–458.[CrossRef]
    [Google Scholar]
  35. Preiss, J. ( 1996; ). ADPglucose pyrophosphorylase: basic science and applications in biotechnology. Biotechnol Annu Rev 2, 259–279.
    [Google Scholar]
  36. Romeo, T., Kumar, A. & Preiss, J. ( 1988; ). Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among biosynthetic genes. Gene 70, 363–376.[CrossRef]
    [Google Scholar]
  37. Roth, W. G., Leckie, M. P. & Dietzler, D. N. ( 1985; ). Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli. Biochem Biophys Res Commun 126, 434–441.[CrossRef]
    [Google Scholar]
  38. Sambrook, J. & Russel, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Seibold, G. M., Dempf, S., Schreiner, J. & Eikmanns, B. J. ( 2007; ). Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology 153, 1275–1285.[CrossRef]
    [Google Scholar]
  40. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L. ( 1997; ). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef]
    [Google Scholar]
  41. Tauch, A., Kaiser, O., Hain, T., Goesmann, A., Weisshaar, B., Albersmeier, A., Bekel, T., Bischoff, N., Brune, I. & other authors ( 2005; ). Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187, 4671–4682.[CrossRef]
    [Google Scholar]
  42. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  43. Tropis, M., Meniche, X., Wolf, A., Gebhardt, H., Strelkov, S., Chami, M., Schomburg, D., Krämer, R., Morbach, S. & Daffé, M. ( 2005; ). The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in corynebacterineae. J Biol Chem 280, 26573–26585.[CrossRef]
    [Google Scholar]
  44. Tzvetkov, M., Klopprogge, C., Zelder, O. & Liebl, W. ( 2003; ). Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall composition. Microbiology 149, 1659–1673.[CrossRef]
    [Google Scholar]
  45. Wolf, A., Krämer, R. & Morbach, S. ( 2003; ). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49, 1119–1134.[CrossRef]
    [Google Scholar]
  46. Wood, J. M. ( 1999; ). Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63, 230–262.
    [Google Scholar]
  47. Yeo, M. & Chater, K. ( 2005; ). The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor. Microbiology 151, 855–861.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005181-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005181-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error