Classification of strains using single-strand conformation polymorphism and high-resolution melting-curve analysis of the gene single-copy region Free

Abstract

is an economically important pathogen of poultry worldwide, causing respiratory infection and synovitis in chickens and turkeys. Identification of isolates is of critical importance, particularly in countries in which poultry flocks are vaccinated with the live attenuated strain MS-H. Using oligonucleotide primers complementary to the single-copy conserved 5′ end of the variable lipoprotein and haemagglutinin gene (), amplicons of ∼400 bp were generated from 35 different strains/isolates from chickens and subjected to mutation scanning analysis. Analysis of the amplicons by single-strand conformation polymorphism (SSCP) revealed 10 distinct profiles (A–J). Sequencing of the amplicons representing these profiles revealed that each profile related to a unique sequence, some differing from each other by only one base-pair substitution. Comparative high-resolution melting (HRM) curve analysis of the amplicons using SYTO 9 green fluorescent dye also displayed profiles which were concordant with the same 10 SSCP profiles (A–J) and their sequences. For both mutation detection methods, the Australian strains represented one of the A, B, C or D profiles, while the USA strains represented one of the E, F, G, H, I or J profiles. The results presented in this study show that the PCR-based SSCP or HRM curve analyses of provide high-resolution mutation detection tools for the detection and identification of strains. In particular, the HRM curve analysis is a rapid and effective technique which can be performed in a single test tube in less than 2 h.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005140-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2679.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005140-0&mimeType=html&fmt=ahah

References

  1. Bencina D., Drobnic-Valic M., Horvat S., Narat M., Kleven S. H., Dovc P. 2001; Molecular basis of the length variation in the N-terminal part of Mycoplasma synoviae hemagglutinin. FEMS Microbiol Lett 203:115–123
    [Google Scholar]
  2. Charvalos E., Peteinaki E., Spyridaki I., Manetas S., Tselentis Y. 1996; Detection of ciprofloxacin resistance mutations in Campylobacter jejuni gyrA by nonradioisotopic single-strand conformation polymorphism and direct DNA sequencing. J Clin Lab Anal 10:129–133
    [Google Scholar]
  3. Cheng J. C., Huang C. L., Lin C. C., Chen C. C., Chang Y. C., Chang S. S., Tseng C. P. 2006; Rapid detection and identification of clinically important bacteria by high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin Chem 52:1997–2004
    [Google Scholar]
  4. Fan H. H., Kleven S. H., Jackwood M. W. 1995; Studies of intraspecies heterogeneity of Mycoplasma synoviae, M. meleagridis , and M. iowae with arbitrarily primed polymerase chain reaction. Avian Dis 39:766–777
    [Google Scholar]
  5. Frey M. L., Hanson R. P., Andrson D. P. 1968; A medium for the isolation of avian mycoplasmas. Am J Vet Res 29:2163–2171
    [Google Scholar]
  6. Garcia M., Jackwood M. W., Levisohn S., Kleven S. H. 1995; Detection of Mycoplasma gallisepticum, M. synoviae , and M. iowae by multi-species polymerase chain reaction and restriction fragment length polymorphism. Avian Dis 39:606–616
    [Google Scholar]
  7. Gasser R. B., Hu M., Abs EL-Osta G. Y., Zarlenga D. S., Pozio E. 2004; Nonisotopic single-strand conformation polymorphism analysis of sequence variability in ribosomal DNA expansion segments within the genus Trichinella (Nematoda: Adenophorea. Electrophoresis 25:3357–3364
    [Google Scholar]
  8. Gilchrist P. T., Cottew G. S. 1974; Isolation of Mycoplasma synoviae from respiratory disease in chickens. Aust Vet J 50:81
    [Google Scholar]
  9. Gundry C. N., Vandersteen J. G., Reed G. H., Pryor R. J., Chen J., Wittwer C. T. 2003; Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396–406
    [Google Scholar]
  10. Guttman D. S., Wang P. W., Wang I. N., Bosler E. M., Luft B. J., Dykhuizen D. E. 1996; Multiple infections of Ixodes scapularis ticks by Borrelia burgdorferi as revealed by single-strand conformation polymorphism analysis. J Clin Microbiol 34:652–656
    [Google Scholar]
  11. Hong Y., Garcia M., Leiting V., Bencina D., Dufour-Zavala L., Zavala G., Kleven S. H. 2004; Specific detection and typing of Mycoplasma synoviae strains in poultry with PCR and DNA sequence analysis targeting the hemagglutinin encoding gene vlhA . Avian Dis 48:606–616
    [Google Scholar]
  12. Kiss I., Matiz K., Kaszanyitzky E., Chavez Y., Johansson K. E. 1997; Detection and identification of avian mycoplasmas by polymerase chain reaction and restriction fragment length polymorphism assay. Vet Microbiol 58:23–30
    [Google Scholar]
  13. Kleven S. H. 1997; Mycoplasma synoviae infection. In Diseases of Poultry pp 220–228 Edited by Calnek B. W., Barnes H. J., Beard C. W., McDougald L. R., Saif Y. M. Ames, IA: Iowa State University Press;
    [Google Scholar]
  14. Krypuy M., Newnham G. M., Thomas D. M., Conron M., Dobrovic A. 2006; High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer 6:295
    [Google Scholar]
  15. Lauerman L. H., Hoerr F. J., Sharpton A. R., Shah S. M., van Senten V. L. 1993; Development and application of a polymerase chain reaction assay for Mycoplasma synoviae . Avian Dis 37:829–834
    [Google Scholar]
  16. Markham J. F., Scott P. C., Whithear K. G. 1998; Field evaluation of the safety and efficacy of a temperature-sensitive Mycoplasma synoviae live vaccine. Avian Dis 42:682–689
    [Google Scholar]
  17. Monis P. T., Giglio S., Saint C. P. 2005; Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34
    [Google Scholar]
  18. Morrow C. J., Bell I. G., Walker S. B., Markham P. F., Thorp B. H., Whithear K. G. 1990a; Isolation of Mycoplasma synoviae from infectious synovitis of chickens. Aust Vet J 67:121–124
    [Google Scholar]
  19. Morrow C. J., Whithear K. G., Kleven S. H. 1990b; Restriction endonuclease analysis of Mycoplasma synoviae strains. Avian Dis 34:611–616
    [Google Scholar]
  20. Morrow C. J., Markham J. F., Whithear K. G. 1998; Production of temperature-sensitive clones of Mycoplasma synoviae for evaluation as live vaccines. Avian Dis 42:667–670
    [Google Scholar]
  21. Noormohammadi A. H., Markham P. F., Whithear K. G., Walker I. D., Gurevich V. A., Ley D. H., Browning G. F. 1997; Mycoplasma synoviae has two distinct phase-variable major membrane antigens, one of which is a putative hemagglutinin. Infect Immun 65:2542–2547
    [Google Scholar]
  22. Noormohammadi A. H., Markham P. F., Kanci A., Whithear K. G., Browning G. F. 2000; A novel mechanism for control of antigenic variation in the hemagglutinin gene family of Mycoplasma synoviae . Mol Microbiol 35:911–923
    [Google Scholar]
  23. Noormohammadi A. H., Browning G. F., Jones J., Whithear K. G. 2002; Improved detection of antibodies to Mycoplasma synoviae vaccine MS-H using an autologous recombinant MSPB enzyme-linked immunosorbent assay. Avian Pathol 31:611–617
    [Google Scholar]
  24. Odell I. D., Cloud J. L., Seipp M., Wittwer C. T. 2005; Rapid species identification within the Mycobacterium chelonae-abscessus group by high-resolution melting analysis of hsp65 PCR products. Am J Clin Pathol 123:96–101
    [Google Scholar]
  25. Olson N. O., Shelton D. C., Bletner J. K., Munro D. A., Anderson G. C. 1956; Studies of infectious synovitis in chickens. Am J Vet Res 17:747–754
    [Google Scholar]
  26. Reed G. H., Wittwer C. T. 2004; Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754
    [Google Scholar]
  27. Robinson B. S., Monis P. T., Dobson P. J. 2006; Rapid, sensitive, and discriminating identification of Naegleria spp. by real-time PCR and melting-curve analysis. Appl Environ Microbiol 72:5857–5863
    [Google Scholar]
  28. Silveira R. M., Fiorentin L., Marques E. K. 1996; Polymerase chain reaction optimization for Mycoplasma gallisepticum and M. synoviae diagnosis. Avian Dis 40:218–222
    [Google Scholar]
  29. Speldooren V., Heym B., Labia R., Nicolas-Chanoine M. H. 1998; Discriminatory detection of inhibitor-resistant beta-lactamases in Escherichia coli by single-strand conformation polymorphism-PCR. Antimicrob Agents Chemother 42:879–884
    [Google Scholar]
  30. Sykes J. E., Studdert V. P., Browning G. F. 1998; Detection and strain differentiation of feline calicivirus in conjunctival swabs by RT-PCR of the hypervariable region of the capsid protein gene. Arch Virol 143:1321–1334
    [Google Scholar]
  31. Telenti A., Imboden P., Marchesi F., Schmidheini T., Bodmer T. 1993; Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 37:2054–2058
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  33. Tokue Y., Sugano K., Saito D., Noda T., Ohkura H., Shimosato Y., Sekiya T. 1994; Detection of novel mutations in the gyrA gene of Staphylococcus aureus by nonradioisotopic single-strand conformation polymorphism analysis and direct DNA sequencing. Antimicrob Agents Chemother 38:428–431
    [Google Scholar]
  34. Vardaman T. H., Drott J. H. 1980; Comparison of Mycoplasma synoviae hemagglutinating antigens by the hemagglutination inhibition test. Avian Dis 24:637–640
    [Google Scholar]
  35. Wang H., Fadl A. A., Khan M. I. 1997; Multiplex PCR for avian pathogenic mycoplasmas. Mol Cell Probes 11:211–216
    [Google Scholar]
  36. Weinack O. M., Snoeyenbos G. H., Kleven S. H. 1983; Strain of Mycoplasma synoviae of low transmissibility. Avian Dis 27:1151–1156
    [Google Scholar]
  37. Wittwer C. T., Reed G. H., Gundry C. N., Vandersteen J. G., Pryor R. J. 2003; High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860
    [Google Scholar]
  38. Yoder H. W. Jr, Drury L. N., Hopkins S. R. 1977; Influence of environment on airsacculitis: effects of relative humidity and air temperature on broilers infected with Mycoplasma synoviae and infectious bronchitis. Avian Dis 21:195–208
    [Google Scholar]
  39. Yogev D., Levisohn S., Kleven S. H., Halachmi D., Razin S. 1988; Ribosomal RNA gene probes to detect intraspecies heterogeneity in Mycoplasma gallisepticum and Mycoplasma synoviae . Avian Dis 32:220–231
    [Google Scholar]
  40. Zhou L., Wang L., Palais R., Pryor R., Wittwer C. T. 2005; High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin Chem 51:1770–1777
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005140-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005140-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed