1887

Abstract

The FNR protein is an oxygen-responsive global transcription factor, and OxyR is a key regulator of the peroxide stress response. Here both FNR and OxyR are shown to regulate expression of the gene. The gene encodes a predicted cytochrome peroxidase, a bacterial haem-containing protein involved in the peroxide stress response through its ability to convert hydrogen peroxide to water. It is shown that the gene of possesses a class II FNR site and an OxyR site upstream of the transcript start. Expression of was found to be dependent on this unusual combination of FNR and OxyR under conditions of oxygen starvation. Phenotypic analysis of the mutant revealed increased sensitivity to exogenous hydrogen peroxide and organic peroxides during growth under anaerobic conditions, consistent with the observed regulation and predicted function of the gene product.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004838-0
2007-05-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1499.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004838-0&mimeType=html&fmt=ahah

References

  1. Alves, T., Besson, S., Duarte, L. C., Pettigrew, G. W., Girio, F. M. F., Devreese, B., Vandenberghe, I., Van Beeumen, J., Fauque, G. & Moura, I. ( 1999; ). A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization. Biochim Biophys Acta 1434, 248–259.[CrossRef]
    [Google Scholar]
  2. Arciero, D. & Hooper, A. ( 1994; ). A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states. J Biol Chem 269, 11878–11886.
    [Google Scholar]
  3. Atack, J. M. & Kelly, D. J. ( 2006; ). Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. Adv Microb Physiol 52, 73–106.
    [Google Scholar]
  4. Becker, S., Holighaus, G., Gabrielczyk, T. & Unden, G. ( 1996; ). O2 as the regulatory signal for FNR-dependent gene expression in Escherichia coli. J Bacteriol 178, 4515–4521.
    [Google Scholar]
  5. Bell, A. & Busby, S. J. W. ( 1994; ). Location and orientation of an activating region in the Escherichia coli transcription factor FNR. Mol Microbiol 11, 383–390.[CrossRef]
    [Google Scholar]
  6. Blake, T., Barnard, A., Busby, S. J. W. & Green, J. ( 2002; ). Transcription activation by FNR: evidence for a functional Activating Region 2. J Bacteriol 184, 5855–5861.[CrossRef]
    [Google Scholar]
  7. Braun, V. & Wu, H. C. ( 1993; ). Lipoproteins: structure, function, biosynthesis and model for protein export. In New Comprehensive Biochemistry, vol. 27, Bacterial Cell Wall, pp. 319–341. Edited by J.-M. Ghuysen & R. Hachenbecks. Amsterdam: Elsevier.
  8. Browning, D. F., Lee, D., Green, J. & Busby, S. J. W. ( 2002; ). Secrets of bacterial transcription taught by the Escherichia coli FNR protein. In Signals, Switches, Regulons and Cascades. pp. 127–142. Edited by D. Hodgson & C. Thomas. Cambridge, UK: Cambridge University Press.
  9. Constantinidou, C., Hobman, J. L., Griffiths, L., Patel, M. D., Penn, C. W., Cole, J. A. & Overton, T. W. ( 2006; ). A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K-12 adapts from aerobic to anaerobic growth. J Biol Chem 281, 4802–4815.[CrossRef]
    [Google Scholar]
  10. Correnti, J., Munster, V., Chan, T. & van der Woude, M. ( 2002; ). Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Mol Microbiol 44, 521–532.[CrossRef]
    [Google Scholar]
  11. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. ( 2004; ). Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96.[CrossRef]
    [Google Scholar]
  12. Crack, J., Green, J. & Thomson, A. J. ( 2004; ). Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J Biol Chem 279, 9278–9286.[CrossRef]
    [Google Scholar]
  13. Crack, J., Green, J., Le Brun, N. E. & Thomson, A. J. ( 2006; ). Detection of sulphide release from the oxygen-sensing [4Fe-4S] cluster of FNR. J Biol Chem 281, 18909–18913.[CrossRef]
    [Google Scholar]
  14. Eiglmeier, K., Honore, N., Iuchi, S., Lin, E. C. C. & Cole, S. T. ( 1989; ). Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol 3, 869–878.[CrossRef]
    [Google Scholar]
  15. Ellfolk, N. & Soininen, R. ( 1970; ). Pseudomonas cytochrome c peroxidase. I. Purification procedure. Acta Chem Scand 24, 2126–2136.[CrossRef]
    [Google Scholar]
  16. Fülöp, V., Watmough, J. & Ferguson, S. J. ( 2001; ). Structure and enzymology of two bacterial diheme enzymes: cytochrome cd 1 nitrite reductase and cytochrome c peroxidase. Adv Inorg Chem 51, 163–204.
    [Google Scholar]
  17. Gilmour, R., Goodhew, C. F., Pettigrew, G. W., Prazeres, S., Moura, I. & Moura, J. J. ( 1993; ). Spectroscopic characterization of cytochrome c peroxidase from Paracoccus denitrificans. Biochem J 294, 745–752.
    [Google Scholar]
  18. Gonzalez, R., Tao, H., Purvis, J. E., York, S. W., Shanmugam, K. T. & Ingram, L. O. ( 2003; ). Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LYO1 (resistant mutant). Biotechnol Prog 19, 612–623.[CrossRef]
    [Google Scholar]
  19. Goodhew, C. F., Wilson, I. B., Hunter, D. J. & Pettigrew, G. W. ( 1990; ). The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem J 271, 707–712.
    [Google Scholar]
  20. Green, J., Baldwin, M. & Richardson, J. ( 1998; ). Downregulation of Escherichia coli yfiD expression by FNR occupying a site at −93.5 involves the AR1-containing face of FNR. Mol Microbiol 29, 1113–1123.[CrossRef]
    [Google Scholar]
  21. Greenberg, J. T. & Demple, B. ( 1989; ). A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol 171, 3933–3939.
    [Google Scholar]
  22. Guest, J. R., Green, J., Irvine, A. S. & Spiro, S. ( 1996; ). The FNR modulon and FNR-regulated gene expression. In Regulation and Gene Expression in Escherichia coli, pp. 317–342. Edited by E. C. C. Lin & A. S. Lynch. Austin, TX: R. G. Landes.
  23. Haagmans, W. & van der Woude, M. ( 2000; ). Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol 35, 877–887.[CrossRef]
    [Google Scholar]
  24. Hanlon, S. P., Holt, R. A. & McEwan, A. G. ( 1992; ). The 44 kDa c-type cytochrome induced in Rhodobacter capsulatus during growth with dimethylsulphoxide as an electron acceptor is cytochrome c peroxidase. FEMS Microbiol Lett 97, 283–288.[CrossRef]
    [Google Scholar]
  25. Herren, C. D., Rocha, E. R. & Smith, C. J. ( 2003; ). Genetic analysis of an important oxidative stress locus in the anaerobe Bacteroides fragilis. Gene 316, 167–175.[CrossRef]
    [Google Scholar]
  26. Kang, Y., Weber, K. D., Qiu, Y., Kiley, P. J. & Blattner, F. R. ( 2005; ). Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187, 1135–1160.[CrossRef]
    [Google Scholar]
  27. Kiley, P. J. & Beinert, H. ( 2003; ). The role of Fe-S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6, 181–185.[CrossRef]
    [Google Scholar]
  28. Kim, S. O., Merchant, K., Nudelman, R., Bayer, W. F., Keng, T., DeAngelo, J., Hausladen, A. & Stamler, J. S. ( 2002; ). OxyR: a molecular code for redox-mediated signalling. Cell 109, 383–396.[CrossRef]
    [Google Scholar]
  29. Korner, H., Sofia, H. J. & Zumft, W. G. ( 2003; ). Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27, 559–592.[CrossRef]
    [Google Scholar]
  30. Kullik, I., Toledano, M. B., Tartaglia, L. A. & Storz, G. ( 1995; ). Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J Bacteriol 177, 1275–1284.
    [Google Scholar]
  31. Lamberg, K. E., Luther, C., Weber, K. D. & Kiley, P. J. ( 2002; ). Characterization of activating Region 3 from Escherichia coli FNR. J Mol Biol 315, 275–283.[CrossRef]
    [Google Scholar]
  32. Lazazzera, B. A., Beinert, H., Khoroshilova, N., Kennedy, M. C. & Kiley, P. J. ( 1996; ). DNA binding and dimerization of the Fe-S containing FNR protein from Escherichia coli are regulated by oxygen. J Biol Chem 271, 2762–2768.[CrossRef]
    [Google Scholar]
  33. Li, B., Wing, H., Lee, D., Wu, H. & Busby, S. ( 1998; ). Transcription activation by Escherichia coli FNR protein: similarities to and differences from the CRP paradigm. Nucleic Acids Res 26, 2075–2081.[CrossRef]
    [Google Scholar]
  34. Martinez, E., Bartolome, B. & Delacruz, F. ( 1988; ). pACYC184-derived cloning vectors containing the multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 15, 159–162.
    [Google Scholar]
  35. Meng, W., Green, J. & Guest, J. R. ( 1998; ). FNR-dependent repression of ndh gene expression requires two upstream FNR-binding sites. Microbiology 143, 1521–1532.
    [Google Scholar]
  36. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Minard, K. I. & McAlister-Henn, L. ( 2001; ). Antioxidant function of cytosolic sources of NADPH in yeast. Free Radic Biol Med 31, 832–843.[CrossRef]
    [Google Scholar]
  38. Partridge, J. D., Scott, C., Tang, Y., Poole, R. K. & Green, J. ( 2006; ). Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J Biol Chem 281, 27806–27815.[CrossRef]
    [Google Scholar]
  39. Poteete, A. R. & Fenton, A. C. ( 1984; ). λ red-dependent growth and recombination of phage P22. Virology 134, 161–167.[CrossRef]
    [Google Scholar]
  40. Powell, B. S., Court, D. L., Nakamura, Y., Rivas, M. P. & Turnbough, C. L., Jr ( 1994; ). Rapid confirmation of single-copy lambda prophage integration by PCR. Nucleic Acids Res 22, 5765–5766.[CrossRef]
    [Google Scholar]
  41. Salmon, K., Hung, S. P., Mekjian, K., Baldi, P., Hatfield, G. W. & Gunsalus, R. P. ( 2003; ). Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J Biol Chem 278, 29837–29855.[CrossRef]
    [Google Scholar]
  42. Sambrook, J. W. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  43. Samyn, B., Van Craenenbroeck, K., De Smet, L., Vandenberghe, I., Pettigrew, G. & Van Beeumen, J. ( 1995; ). A reinvestigation of the covalent structure of Pseudomonas aeruginosa cytochrome c peroxidase. FEBS Lett 377, 145–149.[CrossRef]
    [Google Scholar]
  44. Schultz, S. C., Shields, G. C. & Steitz, T. A. ( 1991; ). Crystal-structure of a CAP–DNA complex: the DNA is bent by 90°. Science 253, 1001–1007.[CrossRef]
    [Google Scholar]
  45. Seaver, L. C. & Imlay, J. A. ( 2004; ). Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem 279, 48742–48750.[CrossRef]
    [Google Scholar]
  46. Seib, K. L., Tseng, H. J., McEwan, A. G., Apicella, M. A. & Jennings, M. P. ( 2004; ). Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J Infect Dis 190, 136–147.[CrossRef]
    [Google Scholar]
  47. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96.[CrossRef]
    [Google Scholar]
  48. Spiro, S., Gaston, K. L., Bell, A. I., Roberts, R. E., Busby, S. J. & Guest, J. R. ( 1990; ). Interconversion of the DNA binding specificities of two related transcription regulators, CRP and FNR. Mol Microbiol 4, 1831–1838.[CrossRef]
    [Google Scholar]
  49. Storz, G. & Zheng, M. ( 2000; ). Oxidative stress. In Bacterial Stress Responses, pp. 47–59. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  50. Storz, G., Tartaglia, L. A. & Ames, B. N. ( 1990; ). Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248, 189–194.[CrossRef]
    [Google Scholar]
  51. Sutton, V. R., Mettert, E. L., Beinert, H. & Kiley, P. J. ( 2004a; ). Kinetic analysis of the oxidative conversion of the [4Fe–4S]2+ cluster of FNR to a [2Fe–2S]2+ cluster. J Bacteriol 186, 8018–8025.[CrossRef]
    [Google Scholar]
  52. Sutton, V. R., Stubna, A., Patschkowski, T., Műnck, E., Beinert, H. & Kiley, P. J. ( 2004b; ). Superoxide destroys the [2Fe–2S]2+ cluster of FNR from Escherichia coli. Biochemistry 43, 791–798.[CrossRef]
    [Google Scholar]
  53. Toledano, M. B., Kullik, I., Trinh, F., Baird, P. T., Schneider, D. T. & Storz, G. ( 1994; ). Redox-dependent shift of OxyR–DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78, 897–909.[CrossRef]
    [Google Scholar]
  54. Turner, S., Reid, E., Smith, H. & Cole, J. ( 2003; ). A novel cytochrome c peroxidase from Neisseria gonorrhoeae: a lipoprotein from a Gram-negative bacterium. Biochem J 373, 865–873.[CrossRef]
    [Google Scholar]
  55. van Spanning, R. J., De Boer, A. P., Reijnders, W. N., Westerhoff, H. V., Stouthamer, A. H. & Van Der Oost, J. ( 1997; ). FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol 23, 893–907.[CrossRef]
    [Google Scholar]
  56. Vollack, K.-U., Hartig, E., Korner, H. & Zumft, W. G. ( 1999; ). Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol Microbiol 31, 1681–1694.[CrossRef]
    [Google Scholar]
  57. Wainwright, L. M., Elvers, K. T., Park, S. F. & Poole, R. K. ( 2005; ). A truncated haemoglobin implicated in oxygen metabolism by the microaerophilic food-borne pathogen Campylobacter jejuni. Microbiology 151, 4079–4091.[CrossRef]
    [Google Scholar]
  58. Walkup, L. K. B. & Kogoma, T. ( 1989; ). Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical. J Bacteriol 171, 1476–1484.
    [Google Scholar]
  59. Williams, S. M., Savery, N. J., Busby, S. J. W. & Wing, H. J. ( 1997; ). Transcription activation at Class I FNR-dependent promoters: identification of the activating surface of FNR and the corresponding contact site in the C-terminal domain of the RNA polymerase α subunit. Nucleic Acids Res 25, 1112–1118.
    [Google Scholar]
  60. Wing, H. J., Williams, S. M. & Busby, S. J. W. ( 1995; ). Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol 177, 6704–6710.
    [Google Scholar]
  61. Wing, H. J., Green, J., Guest, J. R. & Busby, S. J. W. ( 2000; ). Role of activating region 1 of Escherichia coli FNR protein in transcription activation at class ΙΙ promoters. J Biol Chem 275, 29061–29065.[CrossRef]
    [Google Scholar]
  62. Yu, D., Ellis, H. M., Lee, E., Jenkins, N. A., Copeland, N. G. & Court, D. L. ( 2000; ). An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97, 5978–5983.[CrossRef]
    [Google Scholar]
  63. Zahn, J. A., Arciero, D. M., Hooper, A. B., Coats, J. R. & DiSpirito, A. A. ( 1997; ). Cytochrome c peroxidase from Methylococcus capsulatus Bath. Arch Microbiol 168, 362–372.[CrossRef]
    [Google Scholar]
  64. Zheng, M., Doan, B., Schneider, T. D. & Storz, G. ( 1999; ). OxyR and SoxRS regulation of fur. J Bacteriol 181, 4639–4643.
    [Google Scholar]
  65. Zheng, M., Wang, X., Templeton, L. J., Smulski, D. R., LaRossa, R. A. & Storz, G. ( 2001; ). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183, 4562–4570.[CrossRef]
    [Google Scholar]
  66. Ziegelhoffer, E. C. & Kiley, P. J. ( 1995; ). In vitro analysis of a constitutively active mutant form of the Escherichia coli global transcription factor FNR. J Mol Biol 245, 351–361.[CrossRef]
    [Google Scholar]
  67. Zimmermann, A., Reimmann, C., Galimand, M. & Haas, D. ( 1991; ). Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with FNR of Escherichia coli. Mol Microbiol 5, 1483–1490.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004838-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004838-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error