1887

Abstract

Bacterial plasmids are extra-chromosomal genetic elements that code for a wide variety of phenotypes in their bacterial hosts and are maintained in bacterial communities through both vertical and horizontal transfer. Current mathematical models of plasmid–bacteria dynamics, based almost exclusively on mass-action differential equations that describe these interactions in completely mixed environments, fail to adequately explain phenomena such as the long-term persistence of plasmids in natural and clinical bacterial communities. This failure is, at least in part, due to the absence of any spatial structure in these models, whereas most bacterial populations are spatially structured in microcolonies and biofilms. To help bridge the gap between theoretical predictions and observed patterns of plasmid spread and persistence, an individual-based lattice model (interacting particle system) that provides a predictive framework for understanding the dynamics of plasmid–bacteria interactions in spatially structured populations is presented here. To assess the accuracy and flexibility of the model, a series of experiments that monitored plasmid loss and horizontal transfer of the IncP-1 plasmid pB10 : : rfp in K12 and other bacterial populations grown on agar surfaces were performed. The model-based visual patterns of plasmid loss and spread, as well as quantitative predictions of the effects of different initial parental strain densities and incubation time on densities of transconjugants formed on a 2D grid, were in agreement with this and previously published empirical data. These results include features of spatially structured populations that are not predicted by mass-action differential equation models.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004531-0
2007-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2803.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004531-0&mimeType=html&fmt=ahah

References

  1. Beaudoin, D. L., Bryers, J. D., Cunningham, A. B. & Peretti, S. W. ( 1998; ). Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. II. Modeling. Biotechnol Bioeng 57, 280–286.[CrossRef]
    [Google Scholar]
  2. Beloin, C., Valle, J., Latour-Lambert, P., Faure, P., Kzreminski, M., Balestrino, D., Haagensen, J. A., Molin, S., Prensier, G. & other authors ( 2004; ). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51, 659–674.
    [Google Scholar]
  3. Bergstrom, C. T., Lipsitch, M. & Levin, B. R. ( 2000; ). Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 155, 1505–1519.
    [Google Scholar]
  4. Bradley, D. E., Taylor, D. E. & Cohen, D. R. ( 1980; ). Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J Bacteriol 143, 1466–1470.
    [Google Scholar]
  5. Chambless, J. D., Hunt, S. M. & Stewart, P. S. ( 2006; ). A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol 72, 2005–2013.[CrossRef]
    [Google Scholar]
  6. Christensen, B. B., Sternberg, C., Andersen, J. B., Eberl, L., Moller, S., Givskov, M. & Molin, S. ( 1998; ). Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64, 2247–2255.
    [Google Scholar]
  7. Costerton, J. W., Lewandowski, Z., De Beer, D., Caldwell, D., Korber, D. & James, G. ( 1994; ). Minireview: biofilms, the customized microniche. J Bacteriol 176, 2137–2142.
    [Google Scholar]
  8. Cozzarelli, N. R. ( 1977; ). The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem 46, 641–668.[CrossRef]
    [Google Scholar]
  9. Cuny, C., Lesbats, M. & Dukan, S. ( 2007; ). Induction of a global stress response during the first step of Escherichia coli plate growth. Appl Environ Microbiol 73, 885–889.[CrossRef]
    [Google Scholar]
  10. Daubin, V., Moran, N. A. & Ochman, H. ( 2003; ). Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832.[CrossRef]
    [Google Scholar]
  11. De Gelder, L., Vandecasteele, F. P. J., Brown, C. J., Forney, L. J. & Top, E. M. ( 2005; ). Plasmid donor affects host range of the promiscuous IncP-1β plasmid pB10 in an activated sludge microbial community. Appl Environ Microbiol 71, 5309–5317.[CrossRef]
    [Google Scholar]
  12. De Gelder, L., Ponciano, J. M., Joyce, P. & Top, E. M. ( 2007; ). Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology 153, 452–463.[CrossRef]
    [Google Scholar]
  13. Dieckmann, U., Law, R. & Metz, J. A. J. ( 2000; ). The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge: Cambridge University Press.
  14. Dröge, M., Pühler, A. & Selbitschka, W. ( 2000; ). Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet 263, 471–482.[CrossRef]
    [Google Scholar]
  15. Durrett, R. ( 1988; ). Lecture Notes on Particle Systems and Percolation. Belmont, CA: Wadsworth.
  16. Durrett, R. & Levin, S. A. ( 1994a; ). The importance of being discrete (and spatial). Theor Popul Biol 46, 363–394.[CrossRef]
    [Google Scholar]
  17. Durrett, R. & Levin, S. A. ( 1994b; ). Stochastic spatial models: a user's guide to ecological applications. Philos Trans R Soc Lond B Biol Sci 343, 329–350.[CrossRef]
    [Google Scholar]
  18. Durrett, R. & Levin, S. A. ( 1997; ). Allelopathy in spatially distributed populations. J Theor Biol 185, 165–172.[CrossRef]
    [Google Scholar]
  19. Durrett, R. & Levin, S. A. ( 1998; ). Spatial aspects of interspecific competition. Theor Popul Biol 53, 30–43.[CrossRef]
    [Google Scholar]
  20. Durrett, R. & Neuhauser, C. ( 1994; ). Particle systems and reaction diffusion equations. Ann Probab 22, 289–333.[CrossRef]
    [Google Scholar]
  21. Ehlers, L. J. ( 2000; ). Gene transfer in biofilms. In Community Structure and Co-operation in Biofilms (Society for General Microbiology Symposium no. 59), pp. 215–256. Edited by D. G. Allison, P. Gilbert, H. M. Lappin-Scott & H. B. Wilson. Cambridge: Cambridge University Press.
  22. Ehlers, L. J. & Bouwer, E. J. ( 1999; ). RP4 plasmid transfer among species of pseudomonas in a biofilm reactor. Water Sci Technol 39, 163–171.
    [Google Scholar]
  23. Freter, R., Freter, R. R. & Brickner, H. ( 1983; ). Experimental and mathematical models of Escherichia coli plasmid transfer in vivo and in vitro. Infect Immun 39, 60–84.
    [Google Scholar]
  24. Funnell, B. E. & Phillips, G. J. ( 2004; ). Plasmid Biology. Washington, DC: American Society for Microbiology.
  25. Ghigo, J. M. ( 2001; ). Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445.[CrossRef]
    [Google Scholar]
  26. Gogarten, J. P., Doolittle, W. F. & Lawrence, J. R. ( 2002; ). Prokaryotic evolution in the light of gene transfer. Mol Biol Evol 19, 2226–2238.[CrossRef]
    [Google Scholar]
  27. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H. H., Weiner, J., Wiegand, T. & DeAngelis, D. L. ( 2005; ). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310, 987–991.[CrossRef]
    [Google Scholar]
  28. Haagensen, J. A. J., Hansen, S. K., Johansen, T. & Molin, S. ( 2002; ). In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol 42, 261–268.[CrossRef]
    [Google Scholar]
  29. Hanski, I. A. & Gilpin, M. E. ( 1997; ). Metapopulation Biology: Ecology, Genetics, and Evolution. San Diego, CA: Academic Press.
  30. Hausner, M. & Wuertz, S. ( 1999; ). High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65, 3710–3713.
    [Google Scholar]
  31. Heuer, H., Fox, R. & Top, E. M. ( 2007; ). Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavourable Pseudomonas putida host. FEMS Microbiol Ecol 59, 738–748.[CrossRef]
    [Google Scholar]
  32. Hill, K. E. & Top, E. M. ( 1998; ). Gene transfer in soil systems using microcosms. FEMS Microbiol Ecol 25, 319–329.[CrossRef]
    [Google Scholar]
  33. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. M. ( 2002; ). Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174.[CrossRef]
    [Google Scholar]
  34. Kipnis, C. & Landim, C. ( 1999; ). Scaling Limits of Interacting Particle Systems. Berlin: Springer-Verlag.
  35. Kreft, J.-U. & Bonhoeffer, S. ( 2005; ). The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiology 151, 637–641.[CrossRef]
    [Google Scholar]
  36. Kreft, J.-U., Booth, G. & Wimpenny, J. W. ( 1998; ). BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287.[CrossRef]
    [Google Scholar]
  37. Krone, S. M. ( 2004; ). Spatial models: stochastic and deterministic. Math Comput Model 40, 393–409.[CrossRef]
    [Google Scholar]
  38. Krone, S. M. & Guan, Y. ( 2006; ). Spatial self-organization in a cyclic resource-species model. J Theor Biol 241, 14–25.[CrossRef]
    [Google Scholar]
  39. Lagido, C., Wilson, I. J., Glover, L. A. & Prosser, J. I. ( 2003; ). A model for bacterial conjugal gene transfer on solid surfaces. FEMS Microbiol Ecol 44, 67–78.[CrossRef]
    [Google Scholar]
  40. Lejeune, P., Mergeay, M., Van Gijsegem, F., Faelen, M., Gerits, J. & Toussaint, A. ( 1983; ). Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4 : : mini-Mu) in Alcaligenes eutrophus CH 34 and Pseudomonas fluorescens 6.2. J Bacteriol 155, 1015–1026.
    [Google Scholar]
  41. Lenski, R. E. ( 1988; ). Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42, 425–432.[CrossRef]
    [Google Scholar]
  42. Levin, B. R. ( 1981; ). Periodic selection, infectious gene exchange, and the genetic structure of E. coli populations. Genetics 99, 1–23.
    [Google Scholar]
  43. Levin, B. R. & Stewart, F. M. ( 1980; ). The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors. Genetics 94, 425–443.
    [Google Scholar]
  44. Levin, B. R., Stewart, F. M. & Rice, V. A. ( 1979; ). The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2, 247–260.[CrossRef]
    [Google Scholar]
  45. Licht, T. R., Christensen, B. B., Krogfelt, K. A. & Molin, S. ( 1999; ). Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology 145, 2615–2622.
    [Google Scholar]
  46. Lundquist, P. D. & Levin, B. R. ( 1986; ). Transitory derepression and the maintenance of conjugative plasmids. Genetics 113, 483–497.
    [Google Scholar]
  47. Matsuyama, T. & Matsushita, M. ( 1992; ). Self-similar colony morphogenesis by Gram-negative rods as the experimental model of fractal growth by a cell population. Appl Environ Microbiol 58, 1227–1232.
    [Google Scholar]
  48. Mochizuki, A., Yahara, K., Kobayashi, I. & Iwasa, Y. ( 2006; ). Genetic addiction: selfish gene's strategy for symbiosis in the genome. Genetics 172, 1309–1323.
    [Google Scholar]
  49. Molin, S. & Tolker-Nielsen, T. ( 2003; ). Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14, 255–261.[CrossRef]
    [Google Scholar]
  50. Murray, J. D. ( 1989; ). Mathematical Biology. Berlin: Springer-Verlag.
  51. Neubert, M. G. & Caswell, H. ( 2000; ). Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81, 1613–1628.[CrossRef]
    [Google Scholar]
  52. Picioreanu, C., van Loosdrecht, M. C. & Heijnen, J. J. ( 1998a; ). Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58, 101–116.[CrossRef]
    [Google Scholar]
  53. Picioreanu, C., Van Loosdrecht, M. C. M. & Heijnen, J. J. ( 1998b; ). A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 58, 101–116.[CrossRef]
    [Google Scholar]
  54. Picioreanu, C., Kreft, J.-U. & Van Loosdrecht, M. C. M. ( 2004; ). Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70, 3024–3040.[CrossRef]
    [Google Scholar]
  55. Pinedo, C. A. & Smets, B. F. ( 2005; ). Conjugal TOL transfer from Pseudomonas putida to Pseudomonas aeruginosa: effects of restriction proficiency, toxicant exposure, cell density ratios, and conjugation detection method on observed transfer efficiencies. Appl Environ Microbiol 71, 51–57.[CrossRef]
    [Google Scholar]
  56. Pirt, S. J. ( 1967; ). A kinetic study of the mode of growth of surface colonies of bacteria and fungi. J Gen Microbiol 47, 181–197.[CrossRef]
    [Google Scholar]
  57. Reisner, A., Haagensen, J. A. J., Schembri, M. A., Zechner, E. L. & Molin, S. ( 2003; ). Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48, 933–946.[CrossRef]
    [Google Scholar]
  58. Schlüter, A., Heuer, H., Szczepanowski, R., Forney, L. J., Thomas, C. M., Puehler, A. & Top, E. M. ( 2003; ). The 64 508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149, 3139–3153.[CrossRef]
    [Google Scholar]
  59. Simonsen, L. ( 1990; ). Dynamics of plasmid transfer on surfaces. J Gen Microbiol 136, 1001–1007.[CrossRef]
    [Google Scholar]
  60. Simonsen, L. ( 1991; ). The existence conditions for bacterial plasmids: theory and reality. Microb Ecol 22, 187–205.[CrossRef]
    [Google Scholar]
  61. Simonsen, L., Gordon, D. M., Stewart, F. M. & Levin, B. R. ( 1990; ). Estimating the rate of plasmid transfer: an end-point method. J Gen Microbiol 136, 2319–2325.[CrossRef]
    [Google Scholar]
  62. Sørensen, S. J., Bailey, M., Hansen, L. H., Krower, N. & Wuertz, S. ( 2005; ). Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3, 700–710.[CrossRef]
    [Google Scholar]
  63. Stewart, F. M. & Levin, B. R. ( 1977; ). The population biology of bacterial plasmids: a priori conditions for the existence of conjugally transmitted factors. Genetics 87, 209–228.
    [Google Scholar]
  64. Tilman, D. & Kareiva, P. M. ( 1997; ). Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Princeton, NY: Princeton University Press.
  65. Tolker-Nielsen, T. & Molin, S. ( 2004; ). Biofilm development by pseudomonas. In European Symposium on Environmental Biotechnology – ESEB 2004, p. 909. Edited by W. Verstraete. Oostende, Belgium: A.A. Balkema Publishers.
  66. Top, E., Vanrolleghem, P., Mergeay, M. & Verstraete, W. ( 1992; ). Determination of the mechanism of retrotransfer by mechanistic mathematical modeling. J Bacteriol 174, 5953–5960.
    [Google Scholar]
  67. Top, E. M., Moënne-Loccoz, Y., Pembroke, T. & Thomas, C. M. ( 2000; ). Phenotypic traits conferred by plasmids. In The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 249–285. Edited by C. M. Thomas. Amsterdam: Harwood Academic Publishers.
  68. Van Elsas, J. D., Fry, J. C., Hirsch, P. & Molin, S. ( 2000; ). Ecology of plasmid transfer and spread. In The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 175–206. Edited by C. M. Thomas. Amsterdam: Harwood Academic Publishers.
  69. Venkatesan, M. M. & Burland, V. ( 2004; ). Genome-scale analysis of virulence plasmids: the contribution of plasmid-borne virulence genes to enterobacterial pathogenesis. In Plasmid Biology, pp. 614. Edited by B. E. Funnell & G. J. Phillips. Washington, DC: American Society for Microbiology.
  70. Wei, W. & Krone, S. M. ( 2005; ). Spatial invasion by a mutant pathogen. J Theor Biol 236, 335–348.[CrossRef]
    [Google Scholar]
  71. Willetts, N. S. ( 1974; ). The kinetics of F′lac transfer by R100 in Escherichia coli K-12. Mol Gen Genet 129, 123–130.[CrossRef]
    [Google Scholar]
  72. Wimpenny, J. W. T. ( 1979; ). The growth and form of bacterial colonies. J Gen Microbiol 114, 483–486.[CrossRef]
    [Google Scholar]
  73. Wimpenny, J. W. T. & Colasanti, R. ( 1997; ). A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22, 1–16.[CrossRef]
    [Google Scholar]
  74. Xavier, J. B., Picioreanu, C. & van Loosdrecht, M. C. M. ( 2005; ). A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7, 1085–1103.[CrossRef]
    [Google Scholar]
  75. Zechner, E. L., de la Cruz, F., Eisenbrandt, R. & other authors ( 2000; ). Conjugative-DNA transfer processes. In The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 87–174. Edited by C. M. Thomas. Amsterdam: Harwood Academic Publishers.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004531-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004531-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error