1887

Abstract

The Lyme disease spirochaete, , produces the LuxS enzyme both and ; this enzyme catalyses the synthesis of homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD) from a by-product of methylation reactions. Unlike most bacteria, . is unable to utilize homocysteine. However, DPD levels alter expression levels of a subset of proteins. The present studies demonstrate that a single operon encodes both of the enzymes responsible for synthesis of DPD, as well as the enzyme for production of the Lyme spirochaete's only activated-methyl donor and a probable phosphohydrolase. Evidence was found for only a single transcriptional promoter, located 5′ of the first gene, which uses the housekeeping subunit for RNA polymerase holoenzyme function. All four genes are co-expressed, and mRNA levels are growth-rate dependent, being produced during the exponential phase. Thus, high metabolic activity is accompanied by increased cellular levels of the only known borrelial methyl donor, enhanced detoxification of methylation by-products, and increased production of DPD. Therefore, production of DPD is directly correlated with cellular metabolism levels, and may thereby function as an extracellular and/or intracellular signal of bacterial health.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004424-0
2007-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2304.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004424-0&mimeType=html&fmt=ahah

References

  1. Andrade, M. O., Alegria, M. C., Guzzo, C. R., Docena, C., Pareda Rosa, M. C., Ramos, C. H. & Farah, C. S. ( 2006; ). The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol 62, 537–551.[CrossRef]
    [Google Scholar]
  2. Aravind, L. & Koonin, E. V. ( 1998; ). The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23, 469–472.[CrossRef]
    [Google Scholar]
  3. Babb, K., von Lackum, K., Wattier, R. L., Riley, S. P. & Stevenson, B. ( 2005; ). Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187, 3079–3087.[CrossRef]
    [Google Scholar]
  4. Barbour, A. G. ( 1984; ). Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57, 521–525.
    [Google Scholar]
  5. Beeston, A. L. & Surette, M. G. ( 2002; ). pfs-dependent regulation of autoinducer 2 production in Salmonella enterica serovar typhimurium. J Bacteriol 184, 3450–3456.[CrossRef]
    [Google Scholar]
  6. Blevins, J. S., Revel, A. T., Caimano, M. J., Yang, X. F., Richardson, J. A., Hagman, K. E. & Norgard, M. V. ( 2004; ). The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect Immun 72, 4864–4867.[CrossRef]
    [Google Scholar]
  7. Caimano, M. J., Eggers, C. H., Hazlett, K. R. & Radolf, J. D. ( 2004; ). RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72, 6433–6445.[CrossRef]
    [Google Scholar]
  8. Camilli, A. & Bassler, B. L. ( 2006; ). Bacterial small-molecule signaling pathways. Science 311, 1113–1116.[CrossRef]
    [Google Scholar]
  9. Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B. L. & Hughson, F. M. ( 2002; ). Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549.[CrossRef]
    [Google Scholar]
  10. Elias, A. F., Bono, J. L., Carroll, J. A., Stewart, P., Tilly, K. & Rosa, P. ( 2000; ). Altered stationary-phase response in a Borrelia burgdorferi rpoS mutant. J Bacteriol 182, 2909–2918.[CrossRef]
    [Google Scholar]
  11. Elias, A. F., Stewart, P. E., Grimm, D., Caimano, M. J., Eggers, C. H., Tilly, K., Bono, J. L., Akins, D. R., Radolf, J. D. & other authors ( 2002; ). Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70, 2139–2150.[CrossRef]
    [Google Scholar]
  12. Fisher, M. A., Grimm, D., Henion, A. K., Elias, A. F., Stewart, P. E., Rosa, P. A. & Gherardini, F. C. ( 2005; ). Borrelia burgdorferi σ 54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102, 5162–5167.[CrossRef]
    [Google Scholar]
  13. Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., White, O., Ketchum, K. A., Dodson, R. & other authors ( 1997; ). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586.[CrossRef]
    [Google Scholar]
  14. Fraser, C. M., Norris, S. J., Weinstock, G. M., White, O., Sutton, G. G., Dodson, R., Gwinn, M., Hickey, E. K., Clayton, R. & other authors ( 1998; ). Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388.[CrossRef]
    [Google Scholar]
  15. Galperin, M. Y., Natale, D. A., Aravind, L. & Koonin, E. V. ( 1999; ). A specialized version of the HD hydrolase domain implicated in signal transduction. J Mol Microbiol Biotechnol 1, 303–305.
    [Google Scholar]
  16. Galperin, M. Y., Nikolskaya, A. N. & Koonin, E. V. ( 2001; ). Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203, 11–21.[CrossRef]
    [Google Scholar]
  17. Gilmore, R. D., Jr, Mbow, M. L. & Stevenson, B. ( 2001; ). Analysis of Borrelia burgdorferi gene expression during life cycle phases of the tick vector Ixodes scapularis. Microbes Infect 3, 799–808.[CrossRef]
    [Google Scholar]
  18. Greene, R. C., Hunter, J. S. V. & Coch, E. H. ( 1973; ). Properties of metK mutants of Escherichia coli. J Bacteriol 115, 57–67.
    [Google Scholar]
  19. Hübner, A., Yang, X., Nolen, D. M., Popova, T. G., Cabello, P. C. & Norgard, M. V. ( 2001; ). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98, 12724–12729.[CrossRef]
    [Google Scholar]
  20. Hübner, A., Revel, A. T., Nolen, D. M., Hagman, K. E. & Norgard, M. V. ( 2003; ). Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71, 2892–2896.[CrossRef]
    [Google Scholar]
  21. Lu, S. C. ( 2000; ). S-Adenosylmethionine. Int J Biochem Cell Biol 32, 391–395.[CrossRef]
    [Google Scholar]
  22. Miller, J. C. ( 2006; ). Example of real-time quantitative reverse transcription-PCR (Q-RT-PCR) analysis of bacterial gene expression during mammalian infection: Borrelia burgdorferi in mouse tissues. In Current Protocols in Microbiology, pp. 1D.3.1–1D.3.28. Edited by T. K. R. Cioco, J. M. Quarles, B. Stevenson & R. K. Tyler. New York: Wiley.
  23. Miller, S. T., Xavier, K. B., Campagna, S. R., Taga, M. E., Semmelhack, M. F., Bassler, B. L. & Hughson, F. M. ( 2004; ). Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15, 677–687.[CrossRef]
    [Google Scholar]
  24. Narasimhan, S., Santiago, F., Koski, R. A., Brei, B., Anderson, J. F., Fish, D. & Fikrig, E. ( 2002; ). Examination of the Borrelia burgdorferi transcriptome in Ixodes scapularis during feeding. J Bacteriol 184, 3122–3125.[CrossRef]
    [Google Scholar]
  25. Newman, E. B., Budman, L. I., Chan, E. C., Greene, R. C., Lin, R. T., Woldringh, C. L. & D'Ari, R. ( 1998; ). Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J Bacteriol 180, 3614–3619.
    [Google Scholar]
  26. Redfield, R. J. ( 2002; ). Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol 10, 365–370.[CrossRef]
    [Google Scholar]
  27. Ryan, R. P., Fouhy, Y., Lucey, J. F., Crossman, L. C., Spiro, S., He, Y. W., Zhang, L. H., Heeb, S., Camara, M. & other authors ( 2006a; ). Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103, 6712–6717.[CrossRef]
    [Google Scholar]
  28. Ryan, R. P., Fouhy, Y., Lucey, J. F. & Dow, J. M. ( 2006b; ). Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188, 8327–8334.[CrossRef]
    [Google Scholar]
  29. Ryan, R. P., Fouhy, Y., Lucey, J. F., Jiang, B., He, Y. W., Feng, J., Tang, J. & Dow, J. M. ( 2007; ). Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63, 429–442.[CrossRef]
    [Google Scholar]
  30. Ryjenkov, D. A., Tarutina, M., Moskvin, O. V. & Gomelsky, M. ( 2005; ). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187, 1792–1798.[CrossRef]
    [Google Scholar]
  31. Slater, H., Alvarez-Morales, A., Barber, C. E., Daniels, M. J. & Dow, J. M. ( 2000; ). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38, 986–1003.
    [Google Scholar]
  32. Steere, A. C. ( 2001; ). Lyme disease. N Engl J Med 345, 115–125.[CrossRef]
    [Google Scholar]
  33. Stevenson, B. & Babb, K. ( 2002; ). LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70, 4099–4105.[CrossRef]
    [Google Scholar]
  34. Stevenson, B., von Lackum, K., Wattier, R. L., McAlister, J. D., Miller, J. C. & Babb, K. ( 2003; ). Quorum sensing by the Lyme disease spirochete. Microbes Infect 5, 991–997.[CrossRef]
    [Google Scholar]
  35. Sun, J., Daniel, R., Wagner-Dobler, I. & Zeng, A. P. ( 2004; ). Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4, 36 [CrossRef]
    [Google Scholar]
  36. von Lackum, K., Babb, K., Riley, S. P., Wattier, R. L., Bykowski, T. & Stevenson, B. ( 2006; ). Functionality of Borrelia burgdorferi LuxS: the Lyme disease spirochete produces and responds to the pheromone autoinducer-2 and lacks a complete activated-methyl cycle. Int J Med Microbiol 296 (Suppl. 40), 92–102.
    [Google Scholar]
  37. von Lackum, K., Ollison, K. M., Bykowski, T., Nowalk, A. J., Hughes, J. L., Carroll, J. A., Zückert, W. R. & Stevenson, B. ( 2007; ). Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein IpLA7 (P22, P22-A) during the Lyme disease spirochete's mammal-tick infectious cycle. Microbiology 153, 1361–1371.[CrossRef]
    [Google Scholar]
  38. Wang, S., Arends, S. J., Weiss, D. S. & Newman, E. B. ( 2005; ). A deficiency in S-adenosylmethionine synthetase interrupts assembly of the septal ring in Escherichia coli K-12. Mol Microbiol 58, 791–799.[CrossRef]
    [Google Scholar]
  39. Wei, Y. & Newman, E. B. ( 2002; ). Studies on the role of the metK gene product of Escherichia coli K12. Mol Microbiol 43, 1651–1656.[CrossRef]
    [Google Scholar]
  40. Winzer, K., Hardie, K. R., Burgess, N., Doherty, N., Kirke, D., Holden, M. T., Linforth, R., Cornell, K. A., Taylor, A. J. & other authors ( 2002; ). LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148, 909–922.
    [Google Scholar]
  41. Xavier, K. B. & Bassler, B. L. ( 2003; ). LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6, 191–197.[CrossRef]
    [Google Scholar]
  42. Yang, X., Goldberg, M. S., Popova, T. G., Schoeler, G. B., Wikel, S. K., Hagman, K. E. & Norgard, M. V. ( 2000; ). Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37, 1470–1479.[CrossRef]
    [Google Scholar]
  43. Yang, X. F., Alani, S. M. & Norgard, M. V. ( 2003; ). The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100, 11001–11006.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004424-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004424-0
Loading

Data & Media loading...

(A) Q-RT-PCR analysis of transcription by wild-type ( ), and . (B) The control gene was not transcribed by either mutant, consistent with previous results. All results were standardized relative to mRNA levels. Error bars indicate one standard deviation from the mean. All analyses were performed a minimum of three times. Raw data used to generate the graphs are presented in Table S2 [ PDF] (24 kb). Raw data for the Q-RT-PCR analysis of ORF BB0374, , , and transcript levels from strain B31-MI-16 grown for 2, 4, 6 or 8 days at 34 °C. [ PDF] (31 kb). Raw data and calculations for Q-RT-PCR analyses of , and transcript levels from strains B31-A3 (wt), A3ntrA ( ) and A34rpoS ( ) grown at 34 °C. [ PDF] (11 kb).

PDF

(A) Q-RT-PCR analysis of transcription by wild-type ( ), and . (B) The control gene was not transcribed by either mutant, consistent with previous results. All results were standardized relative to mRNA levels. Error bars indicate one standard deviation from the mean. All analyses were performed a minimum of three times. Raw data used to generate the graphs are presented in Table S2 [ PDF] (24 kb). Raw data for the Q-RT-PCR analysis of ORF BB0374, , , and transcript levels from strain B31-MI-16 grown for 2, 4, 6 or 8 days at 34 °C. [ PDF] (31 kb). Raw data and calculations for Q-RT-PCR analyses of , and transcript levels from strains B31-A3 (wt), A3ntrA ( ) and A34rpoS ( ) grown at 34 °C. [ PDF] (11 kb).

PDF

(A) Q-RT-PCR analysis of transcription by wild-type ( ), and . (B) The control gene was not transcribed by either mutant, consistent with previous results. All results were standardized relative to mRNA levels. Error bars indicate one standard deviation from the mean. All analyses were performed a minimum of three times. Raw data used to generate the graphs are presented in Table S2 [ PDF] (24 kb). Raw data for the Q-RT-PCR analysis of ORF BB0374, , , and transcript levels from strain B31-MI-16 grown for 2, 4, 6 or 8 days at 34 °C. [ PDF] (31 kb). Raw data and calculations for Q-RT-PCR analyses of , and transcript levels from strains B31-A3 (wt), A3ntrA ( ) and A34rpoS ( ) grown at 34 °C. [ PDF] (11 kb).

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error