1887

Abstract

Enteropathogenic (EPEC) is a major cause of infantile diarrhoea in developing countries. While colonizing the gut mucosa, EPEC triggers extensive actin-polymerization activity at the site of intimate bacterial attachment, which is mediated by avid interaction between the outer-membrane adhesin intimin and the type III secretion system (T3SS) effector Tir. The prevailing dogma is that actin polymerization by EPEC is achieved following tyrosine phosphorylation of Tir, recruitment of Nck and activation of neuronal Wiskott–Aldrich syndrome protein (N-WASP). In closely related enterohaemorrhagic (EHEC) O157 : H7, actin polymerization is triggered following recruitment of the T3SS effector TccP/EspF (instead of Nck) and local activation of N-WASP. In addition to , typical EHEC O157 : H7 harbour a pseudogene (). However, it has recently been found that atypical, sorbitol-fermenting EHEC O157 carries functional and alleles. Interestingly, intact has been identified in the incomplete genome sequence of the prototype EPEC strain B171 (serotype O111 : H−), but it is missing from another prototype EPEC strain E2348/69 (O127 : H7). E2348/69 and B171 belong to two distinct evolutionary lineages of EPEC, termed EPEC 1 and EPEC 2, respectively. Here, it is reported that while both EPEC 1 and EPEC 2 triggered actin polymerization via the Nck pathway, was found in 26 of 27 (96.2 %) strains belonging to EPEC 2, and in none of the 34 strains belonging to EPEC 1. It was shown that TccP2 was: (i) translocated by the locus of enterocyte effacement-encoded T3SS; (ii) localized at the tip of the EPEC 2-induced actin-rich pedestals in infected HeLa cells and human intestinal organ cultures ; and (iii) essential for actin polymerization in infected Nck−/− cells. Therefore, unlike strains belonging to EPEC 1, strains belonging to EPEC 2 can trigger actin polymerization using both Nck and TccP2 actin-polymerization signalling cascades.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004325-0
2007-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1743.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004325-0&mimeType=html&fmt=ahah

References

  1. Adu-Bobie, J., Frankel, G., Bain, C., Goncaleves, A. G., Trabulsi, L. R., Douce, G., Knutton, S. & Dougan, G. ( 1998; ). Detection of intimin α, β, γ, and δ, four intimin derivatives expressed by attaching and effacing microbial pathogens. J Clin Microbiol 36, 662–668.
    [Google Scholar]
  2. Allen-Vercoe, E., Waddell, B., Toh, M. C. & Devinney, R. ( 2006; ). Amino acid residues within EHEC O157 : H7 Tir involved in phosphorylation, α-actinin recruitment and Nck-independent pedestal formation. Infect Immun 74, 6196–6205.[CrossRef]
    [Google Scholar]
  3. Baldini, M. M., Kaper, J. B., Levine, M. M., Candy, D. C. & Moon, H. W. ( 1983; ). Plasmid-mediated adhesion in enteropathogenic Escherichia coli. J Pediatr Gastroenterol Nutr 2, 534–538.[CrossRef]
    [Google Scholar]
  4. Brinkley, C., Burland, V., Keller, R., Rose, D. J., Boutin, A. T., Klink, S. A., Blattner, F. R. & Kaper, J. B. ( 2006; ). Nucleotide sequence analysis of the enteropathogenic Escherichia coli adherence factor plasmid pMAR7. Infect Immun 74, 5408–5413.[CrossRef]
    [Google Scholar]
  5. Campellone, K. G. & Leong, J. M. ( 2005; ). Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol Microbiol 56, 416–432.[CrossRef]
    [Google Scholar]
  6. Campellone, K. G., Giese, A., Tipper, D. J. & Leong, J. M. ( 2002; ). A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol 43, 1227–1241.[CrossRef]
    [Google Scholar]
  7. Campellone, K. G., Robbins, D. & Leong, J. M. ( 2004a; ). EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell 7, 217–228.[CrossRef]
    [Google Scholar]
  8. Campellone, K. G., Rankin, S., Pawson, T., Kirschner, M. W., Tipper, D. J. & Leong, J. M. ( 2004b; ). Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol 164, 407–416.[CrossRef]
    [Google Scholar]
  9. Campellone, K. G., Brady, M. J., Alamares, J. G., Rowe, D. C., Skehan, B. M., Tipper, D. J. & Leong, J. M. ( 2006; ). Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspFU-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell Microbiol 8, 1488–1503.[CrossRef]
    [Google Scholar]
  10. Charpentier, X. & Oswald, E. ( 2004; ). Analysis of type III translocation signals of enteropathogenic and enterohemorrhagic Escherichia coli effectors using TEM-1 beta-lactamase as a fluorescence-based reporter. J Bacteriol 186, 5486–5495.[CrossRef]
    [Google Scholar]
  11. Chen, H. D. & Frankel, G. ( 2005; ). Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 29, 83–98.[CrossRef]
    [Google Scholar]
  12. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  13. Frankel, G., Phillips, A. D., Trabulsi, L. R., Knutton, S., Dougan, G. & Matthews, S. J. ( 2001; ). Intimin and the host cell – is it bound to end in Tir(s)?. Trends Microbiol 9, 214–218.[CrossRef]
    [Google Scholar]
  14. Garmendia, J., Phillips, A., Chong, Y., Schuller, S., Marches, O., Dahan, S., Oswald, E., Shaw, R. K., Knutton, S. & Frankel, G. ( 2004; ). TccP is an enterohaemorrhagic E. coli O157 : H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6, 1167–1183.[CrossRef]
    [Google Scholar]
  15. Garmendia, J., Ren, Z., Tennant, S., Vieira, M. A. M., Chong, Y., Whale, A., Azzopardi, K., Dahan, S., Palma Sircili, M. & other authors ( 2005; ). Distribution of tccP in clinical enterohaemorrhagic and enteropathogenic Escherichia coli isolates. J Clin Microbiol 43, 5715–5720.[CrossRef]
    [Google Scholar]
  16. Garmendia, J., Carlier, M. F., Egile, C., Didry, D. & Frankel, G. ( 2006; ). Characterisation of TccP-mediated N-WASP activation during enterohaemorrhagic Escherichia coli infection. Cell Microbiol 8, 1444–1455.[CrossRef]
    [Google Scholar]
  17. Girón, J. A., Ho, A. S. & Schoolnik, G. K. ( 1991; ). An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254, 710–713.[CrossRef]
    [Google Scholar]
  18. Goosney, D. L., DeVinney, R. & Finlay, B. B. ( 2001; ). Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect Immun 69, 3315–3322.[CrossRef]
    [Google Scholar]
  19. Gruenheid, S., DeVinney, R., Bladt, F., Goosney, D., Gelkop, S., Gish, G. D., Pawson, T. & Finlay, B. B. ( 2001; ). Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3, 856–859.[CrossRef]
    [Google Scholar]
  20. Hartland, E. L., Batchelor, M., Delahay, R. M., Hale, C., Matthews, S., Dougan, G., Knutton, S., Connerton, I. & Frankel, G. ( 1999; ). Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol Microbiol 32, 151–158.[CrossRef]
    [Google Scholar]
  21. Hicks, S., Frankel, G., Kaper, J. B., Dougan, G. & Phillips, A. D. ( 1998; ). Role of intimin and bundle-foming pili in enteropathgenic Escherichia coli adhesion to pediatric intestine in vitro. Infect Immun 66, 1570–1578.
    [Google Scholar]
  22. Jarvis, K. G., Girón, J. A., Jerse, A. E., McDaniel, T. K., Donnenberg, M. S. & Kaper, J. B. ( 1995; ). Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A 92, 7996–8000.[CrossRef]
    [Google Scholar]
  23. Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. ( 1990; ). A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A 87, 7839–7843.[CrossRef]
    [Google Scholar]
  24. Kaper, J. B. ( 1996; ). Defining EPEC. Rev Microbiol (Suppl. 1) 27, 130–133.
    [Google Scholar]
  25. Karch, H., Tarr, P. I. & Bielaszewska, M. ( 2005; ). Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 295, 405–418.[CrossRef]
    [Google Scholar]
  26. Kenny, B., DeVinney, R., Stein, M., Reinscheid, D. J., Frey, E. A. & Finlay, B. B. ( 1997; ). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520.[CrossRef]
    [Google Scholar]
  27. Knutton, S., Lloyd, D. R. & McNeish, A. S. ( 1987; ). Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55, 69–77.
    [Google Scholar]
  28. Levine, M. M., Berquist, E. J., Nalin, D. R., Waterman, D. H., Hornick, R. B., Young, C. R. & Rowe, B. ( 1978; ). Escherichia coli that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1, 1119–1122.
    [Google Scholar]
  29. Lommel, S., Benesch, S., Rottner, K., Franz, T., Wehland, J. & Kuhn, R. ( 2001; ). Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep 2, 850–857.[CrossRef]
    [Google Scholar]
  30. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. ( 1995; ). A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92, 1664–1668.[CrossRef]
    [Google Scholar]
  31. Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S. & Kaper, J. B. ( 1999; ). The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33, 296–306.[CrossRef]
    [Google Scholar]
  32. Ogura, Y., Ooka, T., Whale, A., Garmendia, J., Beutin, L., Tennant, S., Krause, G., Morabito, S., Chinen, I. & other authors ( 2007; ). TccP2 of O157 : H7 and non-O157 enterohemorrhagic Escherichia coli (EHEC): challenging the dogma of EHEC-induced actin polymerisation. Infect Immun 75, 604–612.[CrossRef]
    [Google Scholar]
  33. Orskov, F., Whittam, T. S., Cravioto, A. & Orskov, I. ( 1990; ). Clonal relationships among classic enteropathogenic Escherichia coli (EPEC) belong to different O groups. J Infect Dis 162, 76–81.[CrossRef]
    [Google Scholar]
  34. Phillips, N., Hayward, R. D. & Koronakis, V. ( 2004; ). Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nat Cell Biol 6, 618–625.[CrossRef]
    [Google Scholar]
  35. Riley, L. W., Junio, L. N., Libaek, L. B. & Schoolnik, G. K. ( 1987; ). Plasmid-encoded expression of lipopolysaccharide O-antigenic polysaccharide in enteropathogenic Escherichia coli. Infect Immun 55, 2052–2056.
    [Google Scholar]
  36. Schlosser-Silverman, E., Elgrably-Weiss, M., Rosenshine, I., Kohen, R. & Altuvia, S. ( 2000; ). Characterization of Escherichia coli DNA lesions generated within J774 macrophages. J Bacteriol 182, 5225–5230.[CrossRef]
    [Google Scholar]
  37. Swimm, A., Bommarius, B., Li, Y., Cheng, D., Reeves, P., Sherman, M., Veach, D., Bornmann, W. & Kalman, D. ( 2004; ). Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals. Mol Biol Cell 15, 3520–3529.[CrossRef]
    [Google Scholar]
  38. Trabulsi, L. R., Keller, R. & Gomes, T. A. ( 2002; ). Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 8, 508–513.[CrossRef]
    [Google Scholar]
  39. Whale, A. D., Garmendia, J., Gomes, T. A. & Frankel, G. ( 2006; ). A novel category of enteropathogenic E. coli simultaneously utilises the Nck and TccP pathways to induce actin remodelling. Cell Microbiol 8, 999–1008.[CrossRef]
    [Google Scholar]
  40. Whittam, T. S. & McGraw, E. A. ( 1996; ). Clonal analysis of EPEC serogroups. Rev Microbiol (Suppl. 1) 27, 7–16.
    [Google Scholar]
  41. Whittam, T. S., Wolfe, M. L., Wachsmuth, I. K., Orskov, F., Orskov, I. & Wilson, R. A. ( 1993; ). Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61, 1619–1629.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004325-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004325-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error