1887

Abstract

sp. strain PN/Y, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from petroleum-contaminated soil. In the degradation of phenanthrene by strain PN/Y, various metabolites, isolated and identified by a combination of chromatographic and spectrometric analyses, revealed a novel phenanthrene assimilation pathway involving 2-hydroxy-1-naphthoic acid. Metabolism of phenanthrene was initiated by the dioxygenation on the 1,2-position of phenanthrene followed by -cleavage of phenanthrene-1,2-diol, leading to 2-hydroxy-1-naphthoic acid, which was then processed via a novel -cleavage pathway, leading to the formation of -2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid and subsequently to salicylic acid. In the lower pathway, salicylic acid was transformed to catechol, which was then metabolized by catechol-2,3-dioxygenase to 2-hydroxymuconaldehyde acid, ultimately forming TCA cycle intermediates. The catabolic genes involved in phenanthrene degradation were found to be plasmid-encoded. This detailed study of polycyclic aromatic hydrocarbon (PAH) metabolism by a Gram-positive species involving a unique ring-cleavage dioxygenase in a novel phenanthrene degradation pathway provides a new insight into the microbial degradation of PAHs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004218-0
2007-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2104.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004218-0&mimeType=html&fmt=ahah

References

  1. Adachi, K., Iwabuchi, T., Sano, H. & Harayama, S. ( 1999; ). Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J Bacteriol 181, 757–763.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Balashova, N. V., Kosheleva, I. A., Golovchenko, N. P. & Boronin, A. M. ( 1999; ). Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem 35, 291–296.[CrossRef]
    [Google Scholar]
  4. Barnsley, E. A. ( 1983; ). Phthalate pathway of phenanthrene metabolism: formation of 2′-carboxybenzalpyruvate. J Bacteriol 154, 113–117.
    [Google Scholar]
  5. Birnboim, H. C. & Doly, J. A. ( 1979; ). A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513–1523.[CrossRef]
    [Google Scholar]
  6. Dean-Ross, D., Moody, J. D., Freeman, J. P., Doerge, D. R. & Cerniglia, C. E. ( 2001; ). Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204, 205–211.[CrossRef]
    [Google Scholar]
  7. Eaton, R. W. & Chapman, P. J. ( 1992; ). Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol 174, 7542–7554.
    [Google Scholar]
  8. Evans, W. C., Fernley, H. N. & Griffiths, E. ( 1965; ). Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads: the ring fission mechanism. Biochem J 95, 819–831.
    [Google Scholar]
  9. Fitzgerald, L. J., Gallucci, J. C. & Gerkin, R. E. ( 1992; ). 1,2-Naphthalenedicarboxylic acid: structures of channel clathrates and an unsolvated crystalline phase. Acta Crystallogr B 48, 290–297.[CrossRef]
    [Google Scholar]
  10. Gibson, D. T. & Subramanian, V. ( 1984; ). Microbial degradation of aromatic hydrocarbons. In Microbial Degradation of Organic Compounds, pp. 181–252. Edited by D. T. Gibson. New York: Dekker.
  11. Goodwin, K. D., Tokaczyk, R., Stephens, F. C. & Saltzman, E. S. ( 2005; ). Degradation of toluene inhibition of methyl bromide biodegradation in seawater and isolation of a marine toluene oxidizer that degrades methyl bromide. Appl Environ Microbiol 71, 3495–3503.[CrossRef]
    [Google Scholar]
  12. Guerin, W. F. & Jones, G. E. ( 1988; ). Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol 54, 937–944.
    [Google Scholar]
  13. Habe, H. & Omori, T. ( 2003; ). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67, 225–243.[CrossRef]
    [Google Scholar]
  14. Harayama, S. ( 1997; ). Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8, 268–273.[CrossRef]
    [Google Scholar]
  15. Harpel, M. R. & Lipscomb, J. D. ( 1990; ). Gentisate 1,2-dioxygenase from Pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J Biol Chem 265, 6301–6311.
    [Google Scholar]
  16. Herrick, J. B., Stuart-Keil, K. G., Ghirose, N. C. & Madsen, E. L. ( 1997; ). Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 63, 2330–2337.
    [Google Scholar]
  17. Houghton, J. E. & Shanley, M. S. ( 1994; ). Catabolic potential of pseudomonads: a regulatory perspective. In Biological Degradation and Bioremediation of Toxic Chemicals, pp. 11–32. Edited by R. G. Chaudhry. London: Chapman & Hall.
  18. Jerina, D. M., Selander, H., Yagi, H., Wells, M. C., Davey, J. F., Mahadevan, V. & Gibson, D. T. ( 1976; ). Dihydrodiols from anthracene and phenanthrene. J Am Chem Soc 98, 5988–5996.[CrossRef]
    [Google Scholar]
  19. Kanaly, R. A. & Harayama, S. ( 2000; ). Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182, 2059–2067.[CrossRef]
    [Google Scholar]
  20. Keum, Y. S., Seo, J. S., Hu, Y. & Li, Q. X. ( 2006; ). Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol 71, 935–941.[CrossRef]
    [Google Scholar]
  21. Kim, Y. H., Moody, J. D., Freeman, J. P., Brezna, B., Engesser, K. H. & Cerniglia, C. E. ( 2004; ). Evidence for the existence of PAH-quinone reductase and catechol-O-methyltransferase in Mycobacterium vanbaalenii PYR-1. J Ind Microbiol Biotechnol 31, 507–516.[CrossRef]
    [Google Scholar]
  22. Kim, Y. H., Freeman, J. P., Moody, J. D., Engesser, K. H. & Cerniglia, C. E. ( 2005; ). Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 67, 275–285.[CrossRef]
    [Google Scholar]
  23. Kiyohara, H. & Nagao, K. ( 1978; ). The catabolism of phenanthrene and naphthalene by bacteria. J Gen Microbiol 105, 69–75.[CrossRef]
    [Google Scholar]
  24. Kiyohara, H., Nagao, K. & Nomi, R. ( 1976; ). Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric Biol Chem 40, 1075–1082.[CrossRef]
    [Google Scholar]
  25. Kiyohara, H., Nagao, K., Kouno, K. & Yano, K. ( 1982; ). Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43, 458–461.
    [Google Scholar]
  26. Kiyohara, H., Takizawa, N., Data, H., Torigoe, S. & Yano, K. ( 1990; ). Characterization of a phenanthrene degradation plasmid from Alcaligenes faecalis AFK2. J Ferment Bioeng 69, 54–56.[CrossRef]
    [Google Scholar]
  27. Kloos, W. E. & Schleifer, K. H. ( 1986; ). Genus IV. Staphylococcus Rosenbach 1884, 18AL, Nom. Cons. Opin. 17 Jud. Comm. 1958, 153. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1013–1035. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  28. Kojima, Y., Itada, N. & Hayaishi, O. ( 1961; ). Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem 236, 2223–2228.
    [Google Scholar]
  29. Kreiswirth, B. N., Lofdahl, S., Belley, M. J., O'Reilly, M., Shlievert, P. M., Bergdoll, M. S. & Novick, R. P. ( 1983; ). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712.[CrossRef]
    [Google Scholar]
  30. Lopez, Z., Vila, J., Minguillon, C. & Grifoll, M. ( 2006; ). Metabolism of fluoranthene by Mycobacterium sp. strain AP1. Appl Microbiol Biotechnol 70, 747–756.[CrossRef]
    [Google Scholar]
  31. Ma, Y., Wang, L. & Shao, Z. ( 2006; ). Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8, 455–465.[CrossRef]
    [Google Scholar]
  32. Marston, C. P., Pereira, Z. C., Ferguson, J., Fischer, L., Hedstrom, O., Dashwood, W. M. & Baird, W. M. ( 2001; ). Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis 22, 1077–1086.[CrossRef]
    [Google Scholar]
  33. Mastrangelo, G., Fadda, E. & Marzia, V. ( 1996; ). Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104, 1166–1170.[CrossRef]
    [Google Scholar]
  34. Moody, J. D., Freeman, J. P., Doerge, D. R. & Cerniglia, C. E. ( 2001; ). Degradation of phenanthrene and anthracene by cell suspensions of Mycrobacterium sp. strain PYR-1. Appl Environ Microbiol 67, 1476–1483.[CrossRef]
    [Google Scholar]
  35. Moreira, L. M. & Sa-Correia, I. ( 1997; ). Megaplasmids in Thermus oshimai isolates from two widely separated geographical areas: restriction fragment profiling and DNA homology. Arch Microbiol 168, 473–479.[CrossRef]
    [Google Scholar]
  36. Mrozik, A. & Labuzek, S. ( 2002; ). A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains. Acta Microbiol Pol 51, 367–378.
    [Google Scholar]
  37. Narro, M. L., Cerniglia, C. E., Baalen, C. V. & Gibson, D. T. ( 1992; ). Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 58, 1351–1359.
    [Google Scholar]
  38. Parrish, Z. D., Banks, M. K. & Schwab, A. P. ( 2004; ). Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremediation 6, 119–137.[CrossRef]
    [Google Scholar]
  39. Pelkonen, O. & Nebert, D. W. ( 1982; ). Metabolism of polycyclic hydrocarbons: etiologic role in carcenogenesis. Pharmacol Rev 34, 189–222.
    [Google Scholar]
  40. Pinyakong, O., Habe, H., Supaka, N., Pinpanichkarn, P., Juntongjin, K., Yoshida, T., Furihata, K., Nojiri, H., Yamane, H. & Omori, T. ( 2000; ). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191, 115–121.[CrossRef]
    [Google Scholar]
  41. Pothuluri, J. V. & Cerniglia, C. E. ( 1994; ). Microbial metabolism of polycyclic aromatic hydrocarbons. In Biological Degradation and Bioremediation of Toxic Chemicals, pp. 92–124. Edited by R. G. Chaudhry. London: Chapman & Hall.
  42. Prabhu, Y. & Phale, P. S. ( 2003; ). Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61, 342–351.[CrossRef]
    [Google Scholar]
  43. Rehmann, K., Noll, H. P., Steinberg, C. E. W. & Kettrup, A. A. ( 1998; ). Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36, 2977–2992.[CrossRef]
    [Google Scholar]
  44. Rehmann, K., Hertkorn, N. & Kettrup, A. A. ( 2001; ). Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth. Microbiology 147, 2783–2794.
    [Google Scholar]
  45. Samanta, S. K., Chakraborti, A. K. & Jain, R. K. ( 1999; ). Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53, 98–107.[CrossRef]
    [Google Scholar]
  46. Samanta, S. K., Singh, O. V. & Jain, R. K. ( 2002; ). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20, 243–248.[CrossRef]
    [Google Scholar]
  47. Schenk, S. & Laddaga, R. A. ( 1992; ). Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 94, 133–138.[CrossRef]
    [Google Scholar]
  48. Seo, J. S., Keum, Y. S., Hu, Y., Lee, S. E. & Li, Q. X. ( 2006a; ). Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation 18, 123–131.[CrossRef]
    [Google Scholar]
  49. Seo, J. S., Keum, Y. S., Hu, Y., Lee, S. E. & Li, Q. X. ( 2006b; ). Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65, 2388–2394.[CrossRef]
    [Google Scholar]
  50. Shuttleworth, K. L. & Cerniglia, C. E. ( 1995; ). Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 54, 291–302.[CrossRef]
    [Google Scholar]
  51. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 611–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  52. Survery, S., Ahmad, S., Subhan, S. A., Ajaz, M. & Rasool, S. A. ( 2004; ). Hydrocarbon degrading bacteria from Pakistani soil: isolation, identification, screening and genetical studies. Pak J Biol Sci 7, 1518–1522.[CrossRef]
    [Google Scholar]
  53. Sutherland, J. B., Freeman, J. P., Selby, A. L., Miller, D. W. & Cerniglia, C. E. ( 1990; ). Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol 154, 260–266.[CrossRef]
    [Google Scholar]
  54. Tortella, G. R., Diez, M. C. & Duran, N. ( 2005; ). Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31, 197–212.[CrossRef]
    [Google Scholar]
  55. Tsuda, M., Tan, H. M., Nishi, A. & Furukawa, K. ( 1999; ). Mobile catabolic genes in bacteria. J Biosci Bioeng 87, 401–410.[CrossRef]
    [Google Scholar]
  56. Vila, J., López, Z., Sabaté, J., Minguillón, C., Solanas, A. M. & Grifoll, M. ( 2001; ). Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67, 5497–5505.[CrossRef]
    [Google Scholar]
  57. Vinas, M., Sabate, J., Espuny, M. J. & Solanas, A. M. ( 2005; ). Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71, 7008–7018.[CrossRef]
    [Google Scholar]
  58. Xue, W. & Warshawsky, D. ( 2005; ). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206, 73–93.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004218-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004218-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error