1887

Abstract

sp. strain PN/Y, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from petroleum-contaminated soil. In the degradation of phenanthrene by strain PN/Y, various metabolites, isolated and identified by a combination of chromatographic and spectrometric analyses, revealed a novel phenanthrene assimilation pathway involving 2-hydroxy-1-naphthoic acid. Metabolism of phenanthrene was initiated by the dioxygenation on the 1,2-position of phenanthrene followed by -cleavage of phenanthrene-1,2-diol, leading to 2-hydroxy-1-naphthoic acid, which was then processed via a novel -cleavage pathway, leading to the formation of -2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid and subsequently to salicylic acid. In the lower pathway, salicylic acid was transformed to catechol, which was then metabolized by catechol-2,3-dioxygenase to 2-hydroxymuconaldehyde acid, ultimately forming TCA cycle intermediates. The catabolic genes involved in phenanthrene degradation were found to be plasmid-encoded. This detailed study of polycyclic aromatic hydrocarbon (PAH) metabolism by a Gram-positive species involving a unique ring-cleavage dioxygenase in a novel phenanthrene degradation pathway provides a new insight into the microbial degradation of PAHs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004218-0
2007-07-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2104.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004218-0&mimeType=html&fmt=ahah

References

  1. Adachi K., Iwabuchi T., Sano H., Harayama S. 1999; Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J Bacteriol 181:757–763
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Balashova N. V., Kosheleva I. A., Golovchenko N. P., Boronin A. M. 1999; Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem 35:291–296 [CrossRef]
    [Google Scholar]
  4. Barnsley E. A. 1983; Phthalate pathway of phenanthrene metabolism: formation of 2′-carboxybenzalpyruvate. J Bacteriol 154:113–117
    [Google Scholar]
  5. Birnboim H. C., Doly J. A. 1979; A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  6. Dean-Ross D., Moody J. D., Freeman J. P., Doerge D. R., Cerniglia C. E. 2001; Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204:205–211 [CrossRef]
    [Google Scholar]
  7. Eaton R. W., Chapman P. J. 1992; Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol 174:7542–7554
    [Google Scholar]
  8. Evans W. C., Fernley H. N., Griffiths E. 1965; Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads: the ring fission mechanism. Biochem J 95:819–831
    [Google Scholar]
  9. Fitzgerald L. J., Gallucci J. C., Gerkin R. E. 1992; 1,2-Naphthalenedicarboxylic acid: structures of channel clathrates and an unsolvated crystalline phase. Acta Crystallogr B 48:290–297 [CrossRef]
    [Google Scholar]
  10. Gibson D. T., Subramanian V. 1984; Microbial degradation of aromatic hydrocarbons. In Microbial Degradation of Organic Compounds pp 181–252 Edited by Gibson D. T. New York: Dekker;
    [Google Scholar]
  11. Goodwin K. D., Tokaczyk R., Stephens F. C., Saltzman E. S. 2005; Degradation of toluene inhibition of methyl bromide biodegradation in seawater and isolation of a marine toluene oxidizer that degrades methyl bromide. Appl Environ Microbiol 71:3495–3503 [CrossRef]
    [Google Scholar]
  12. Guerin W. F., Jones G. E. 1988; Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol 54:937–944
    [Google Scholar]
  13. Habe H., Omori T. 2003; Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243 [CrossRef]
    [Google Scholar]
  14. Harayama S. 1997; Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273 [CrossRef]
    [Google Scholar]
  15. Harpel M. R., Lipscomb J. D. 1990; Gentisate 1,2-dioxygenase from Pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J Biol Chem 265:6301–6311
    [Google Scholar]
  16. Herrick J. B., Stuart-Keil K. G., Ghirose N. C., Madsen E. L. 1997; Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 63:2330–2337
    [Google Scholar]
  17. Houghton J. E., Shanley M. S. 1994; Catabolic potential of pseudomonads: a regulatory perspective. In Biological Degradation and Bioremediation of Toxic Chemicals pp 11–32 Edited by Chaudhry R. G. London: Chapman & Hall;
    [Google Scholar]
  18. Jerina D. M., Selander H., Yagi H., Wells M. C., Davey J. F., Mahadevan V., Gibson D. T. 1976; Dihydrodiols from anthracene and phenanthrene. J Am Chem Soc 98:5988–5996 [CrossRef]
    [Google Scholar]
  19. Kanaly R. A., Harayama S. 2000; Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067 [CrossRef]
    [Google Scholar]
  20. Keum Y. S., Seo J. S., Hu Y., Li Q. X. 2006; Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol 71:935–941 [CrossRef]
    [Google Scholar]
  21. Kim Y. H., Moody J. D., Freeman J. P., Brezna B., Engesser K. H., Cerniglia C. E. 2004; Evidence for the existence of PAH-quinone reductase and catechol- O -methyltransferase in Mycobacterium vanbaalenii PYR-1. J Ind Microbiol Biotechnol 31:507–516 [CrossRef]
    [Google Scholar]
  22. Kim Y. H., Freeman J. P., Moody J. D., Engesser K. H., Cerniglia C. E. 2005; Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 67:275–285 [CrossRef]
    [Google Scholar]
  23. Kiyohara H., Nagao K. 1978; The catabolism of phenanthrene and naphthalene by bacteria. J Gen Microbiol 105:69–75 [CrossRef]
    [Google Scholar]
  24. Kiyohara H., Nagao K., Nomi R. 1976; Degradation of phenanthrene through o -phthalate by an Aeromonas sp. Agric Biol Chem 40:1075–1082 [CrossRef]
    [Google Scholar]
  25. Kiyohara H., Nagao K., Kouno K., Yano K. 1982; Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43:458–461
    [Google Scholar]
  26. Kiyohara H., Takizawa N., Data H., Torigoe S., Yano K. 1990; Characterization of a phenanthrene degradation plasmid from Alcaligenes faecalis AFK2. J Ferment Bioeng 69:54–56 [CrossRef]
    [Google Scholar]
  27. Kloos W. E., Schleifer K. H. 1986; Genus IV. Staphylococcus Rosenbach 1884, 18AL, Nom. Cons. Opin. 17 Jud. Comm. 1958, 153. In Bergey's Manual of Systematic Bacteriology vol. 2 pp 1013–1035 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  28. Kojima Y., Itada N., Hayaishi O. 1961; Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem 236:2223–2228
    [Google Scholar]
  29. Kreiswirth B. N., Lofdahl S., Belley M. J., O'Reilly M., Shlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712 [CrossRef]
    [Google Scholar]
  30. Lopez Z., Vila J., Minguillon C., Grifoll M. 2006; Metabolism of fluoranthene by Mycobacterium sp. strain AP1. Appl Microbiol Biotechnol 70:747–756 [CrossRef]
    [Google Scholar]
  31. Ma Y., Wang L., Shao Z. 2006; Pseudomonas , the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465 [CrossRef]
    [Google Scholar]
  32. Marston C. P., Pereira Z. C., Ferguson J., Fischer L., Hedstrom O., Dashwood W. M., Baird W. M. 2001; Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis 22:1077–1086 [CrossRef]
    [Google Scholar]
  33. Mastrangelo G., Fadda E., Marzia V. 1996; Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104:1166–1170 [CrossRef]
    [Google Scholar]
  34. Moody J. D., Freeman J. P., Doerge D. R., Cerniglia C. E. 2001; Degradation of phenanthrene and anthracene by cell suspensions of Mycrobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483 [CrossRef]
    [Google Scholar]
  35. Moreira L. M., Sa-Correia I. 1997; Megaplasmids in Thermus oshimai isolates from two widely separated geographical areas: restriction fragment profiling and DNA homology. Arch Microbiol 168:473–479 [CrossRef]
    [Google Scholar]
  36. Mrozik A., Labuzek S. 2002; A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains. Acta Microbiol Pol 51:367–378
    [Google Scholar]
  37. Narro M. L., Cerniglia C. E., Baalen C. V., Gibson D. T. 1992; Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 58:1351–1359
    [Google Scholar]
  38. Parrish Z. D., Banks M. K., Schwab A. P. 2004; Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremediation 6:119–137 [CrossRef]
    [Google Scholar]
  39. Pelkonen O., Nebert D. W. 1982; Metabolism of polycyclic hydrocarbons: etiologic role in carcenogenesis. Pharmacol Rev 34:189–222
    [Google Scholar]
  40. Pinyakong O., Habe H., Supaka N., Pinpanichkarn P., Juntongjin K., Yoshida T., Furihata K., Nojiri H., Yamane H., Omori T. 2000; Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191:115–121 [CrossRef]
    [Google Scholar]
  41. Pothuluri J. V., Cerniglia C. E. 1994; Microbial metabolism of polycyclic aromatic hydrocarbons. In Biological Degradation and Bioremediation of Toxic Chemicals pp 92–124 Edited by Chaudhry R. G. London: Chapman & Hall;
    [Google Scholar]
  42. Prabhu Y., Phale P. S. 2003; Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351 [CrossRef]
    [Google Scholar]
  43. Rehmann K., Noll H. P., Steinberg C. E. W., Kettrup A. A. 1998; Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36:2977–2992 [CrossRef]
    [Google Scholar]
  44. Rehmann K., Hertkorn N., Kettrup A. A. 2001; Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth. Microbiology 147:2783–2794
    [Google Scholar]
  45. Samanta S. K., Chakraborti A. K., Jain R. K. 1999; Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107 [CrossRef]
    [Google Scholar]
  46. Samanta S. K., Singh O. V., Jain R. K. 2002; Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248 [CrossRef]
    [Google Scholar]
  47. Schenk S., Laddaga R. A. 1992; Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 94:133–138 [CrossRef]
    [Google Scholar]
  48. Seo J. S., Keum Y. S., Hu Y., Lee S. E., Li Q. X. 2006a; Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta - and ortho -cleavage of naphthalene-1,2-diol. Biodegradation 18:123–131 [CrossRef]
    [Google Scholar]
  49. Seo J. S., Keum Y. S., Hu Y., Lee S. E., Li Q. X. 2006b; Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta - and ortho -cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65:2388–2394 [CrossRef]
    [Google Scholar]
  50. Shuttleworth K. L., Cerniglia C. E. 1995; Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 54:291–302 [CrossRef]
    [Google Scholar]
  51. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 611–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  52. Survery S., Ahmad S., Subhan S. A., Ajaz M., Rasool S. A. 2004; Hydrocarbon degrading bacteria from Pakistani soil: isolation, identification, screening and genetical studies. Pak J Biol Sci 7:1518–1522 [CrossRef]
    [Google Scholar]
  53. Sutherland J. B., Freeman J. P., Selby A. L., Miller D. W., Cerniglia C. E. 1990; Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol 154:260–266 [CrossRef]
    [Google Scholar]
  54. Tortella G. R., Diez M. C., Duran N. 2005; Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212 [CrossRef]
    [Google Scholar]
  55. Tsuda M., Tan H. M., Nishi A., Furukawa K. 1999; Mobile catabolic genes in bacteria. J Biosci Bioeng 87:401–410 [CrossRef]
    [Google Scholar]
  56. Vila J., Solanas A. M., Grifoll M., López Z., Sabaté J., Minguillón C. 2001; Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505 [CrossRef]
    [Google Scholar]
  57. Vinas M., Sabate J., Espuny M. J., Solanas A. M. 2005; Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018 [CrossRef]
    [Google Scholar]
  58. Xue W., Warshawsky D. 2005; Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004218-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004218-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error