1887

Abstract

is naturally competent for transformation throughout its growth cycle. Transformation in neisserial species is coupled to the expression of type IV pili, which are present on the cell surface as bundled filamentous appendages, and are assembled, extruded and retracted by the pilus biogenesis components. During the initial phase of the transformation process, binding and uptake of DNA takes place with entry through a presumed outer-membrane channel into the periplasm. This study showed that DNA associates only weakly with purified pili, but binds significantly to the PilQ complex isolated directly from meningococcal membranes. By assessing the DNA-binding activity of the native complex PilQ, as well as recombinant truncated PilQ monomers, it was shown that the N-terminal region of PilQ is involved in the interaction with DNA. It was evident that the binding of ssDNA to PilQ had a higher affinity than the binding of dsDNA. The binding of DNA to PilQ did not, however, depend on the presence of the neisserial DNA-uptake sequence. It is suggested that transforming DNA is introduced into the cell through the outer-membrane channel formed by the PilQ complex, and that DNA uptake occurs by non-specific introduction of DNA coupled to pilus retraction, followed by presentation to DNA-binding component(s), including PilQ.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004200-0
2007-05-01
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1593.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004200-0&mimeType=html&fmt=ahah

References

  1. Aas F. E., Wolfgang M., Frye S., Dunham S., Lovold C., Koomey M. 2002; Competence for natural transformation in Neisseria gonorrhoeae : components of DNA binding and uptake linked to type IV pilus expression. Mol Microbiol 46:749–760 [CrossRef]
    [Google Scholar]
  2. Bille E., Zahar J. R., Perrin A., Morelle S., Kriz P., Jolley K. A., Maiden M. C., Dervin C., Nassif X., Tinsley C. R. 2005; A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med 201:1905–1913 [CrossRef]
    [Google Scholar]
  3. Bitter W., Koster M., Latijnhouwers M., Tommassen J., de Cock H. 1998; Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27:209–219 [CrossRef]
    [Google Scholar]
  4. Bøvre K., Bergan T., Froholm L. O. 1970; Electron microscopical and serological characteristics associated with colony type in Moraxella nonliquefaciens . Acta Pathol Microbiol Scand [B]. Microbiol Immunol 78:765–779
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  6. Bradley D. E. 1974; The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 58:149–163 [CrossRef]
    [Google Scholar]
  7. Brinton C. C., Bryan J., Dillon J.-A., Guerina N., Jacobson L. J., Labik A., Lee S., Levine A., Lim S. other authors 1978; Uses of pili in gonorrhea control: role of bacterial pili in disease, purification and properties of gonococcal pili, and progress in the development of a gonococcal pilus vaccine for gonorrhoeae. In Immunobiology of Neisseria gonorrhoeae pp 155–178 Edited by Brooks G. E., Gotschlich E. C., Homes K. H., Sawyer W. D., Young F. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Bøvre K. 1964; Studies on transformation in moraxella and organisms assumed to be related to moraxella. 1. A method for quantitative transformation in moraxella and neisseria, with streplomycin resistance as the genetic marker. Acta Pathol Microbiol Scand 61:457–473
    [Google Scholar]
  9. Carbonnelle E., Helaine S., Nassif X., Pelicic V. 2006; A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61:1510–1522 [CrossRef]
    [Google Scholar]
  10. Chaussee M. S., Hill S. A. 1998; Formation of single-stranded DNA during DNA transformation of Neisseria gonorrhoeae. J Bacteriol 180:5117–5122
    [Google Scholar]
  11. Chen I., Dubnau D. 2004; DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249 [CrossRef]
    [Google Scholar]
  12. Chen I., Gotschlich E. C. 2001; ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J Bacteriol 183:3160–3168 [CrossRef]
    [Google Scholar]
  13. Collins R. F., Davidsen L., Derrick J. P., Ford R. C., Tønjum T. 2001; Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol 183:3825–3832 [CrossRef]
    [Google Scholar]
  14. Collins R. F., Ford R. C., Kitmitto A., Olsen R. O., Tønjum T., Derrick J. P. 2003; Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J Bacteriol 185:2611–2617 [CrossRef]
    [Google Scholar]
  15. Collins R. F., Frye S. A., Kitmitto A., Ford R. C., Tønjum T., Derrick J. P. 2004; Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 Å resolution. J Biol Chem 279:39750–39756 [CrossRef]
    [Google Scholar]
  16. Collins R. F., Frye S. A., Balasingham S., Ford R. C., Tønjum T., Derrick J. P. 2005; Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem 280:18923–18930 [CrossRef]
    [Google Scholar]
  17. Davidsen T., Seeberg E. C., Tønjum T., Bjørås M. 2005; Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J Bacteriol 187:2801–2809 [CrossRef]
    [Google Scholar]
  18. Drake S. L., Koomey M. 1995; The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol Microbiol 18:975–986 [CrossRef]
    [Google Scholar]
  19. Frasch C. E., Chapman S. S. 1972; Classification of Neisseria meningitidis group B into distinct serotypes. I. Serological typing by a microbactericidal method. Infect Immun 5:98–102
    [Google Scholar]
  20. Friedrich A., Hartsch T., Averhoff B. 2001; Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 67:3140–3148 [CrossRef]
    [Google Scholar]
  21. Frøholm L. O., Jyssum K., Bøvre K. 1973; Electron microscopical and cultural features of Neisseria meningitidis competence variants. Acta Pathol Microbiol Scand [B] Microbiol Immunol 81:525–537
    [Google Scholar]
  22. Frye S. A., Assalkhou R., Collins R. F., Ford R. C., Petersson C., Derrick J. P., Tonjum T. 2006; Topology of the outer-membrane secretin PilQ from Neisseria meningitidis. Microbiology 152:3751–3764 [CrossRef]
    [Google Scholar]
  23. Goodman S. D., Scocca J. J. 1988; Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 85:6982–6986 [CrossRef]
    [Google Scholar]
  24. Graupner S., Weger N., Sohni M., Wackernagel W. 2001; Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI. J Bacteriol 183:4694–4701 [CrossRef]
    [Google Scholar]
  25. Hamilton H. L., Dillard J. P. 2006; Natural transformation of Neisseria gonorrhoeae : from DNA donation to homologous recombination. Mol Microbiol 59:376–385 [CrossRef]
    [Google Scholar]
  26. Koomey M. 1998; Competence for natural transformation in Neisseria gonorrhoeae : a model system for studies of horizontal gene transfer. APMIS Suppl 84:56–61
    [Google Scholar]
  27. Koomey J. M., Falkow S. 1987; Cloning of the recA gene of Neisseria gonorrhoeae and construction of gonococcal recA mutants. J Bacteriol 169:790–795
    [Google Scholar]
  28. Long C. D., Tobiason D. M., Lazio M. P., Kline K. A., Seifert H. S. 2003; Low-level pilin expression allows for substantial DNA transformation competence in Neisseria gonorrhoeae. Infect Immun 71:6279–6291 [CrossRef]
    [Google Scholar]
  29. Lorenz M. G., Wackernagel W. 1990; Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Arch Microbiol 154:380–385
    [Google Scholar]
  30. Mathis L. S., Scocca J. J. 1984; On the role of pili in transformation of Neisseria gonorrhoeae. J Gen Microbiol 130:3165–3173
    [Google Scholar]
  31. Mattick J. S. 2002; Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314 [CrossRef]
    [Google Scholar]
  32. Mehr I. J., Seifert H. S. 1998; Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 30:697–710 [CrossRef]
    [Google Scholar]
  33. Meier P., Berndt C., Weger N., Wackernagel W. 2002; Natural transformation of Pseudomonas stutzeri by single-stranded DNA requires type IV pili, competence state and comA. FEMS Microbiol Lett 207:75–80 [CrossRef]
    [Google Scholar]
  34. Misra V. K., Honig B. 1995; On the magnitude of the electrostatic contribution to ligand–DNA interactions. Proc Natl Acad Sci U S A 92:4691–4695 [CrossRef]
    [Google Scholar]
  35. Nouwen N., Ranson N., Saibil H., Wolpensinger B., Engel A., Ghazi A., Pugsley A. P. 1999; Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc Natl Acad Sci U S A 96:8173–8177 [CrossRef]
    [Google Scholar]
  36. Nouwen N., Stahlberg H., Pugsley A. P., Engel A. 2000; Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J 19:2229–2236 [CrossRef]
    [Google Scholar]
  37. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [CrossRef]
    [Google Scholar]
  38. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A. 1995; Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature 378:32–38 [CrossRef]
    [Google Scholar]
  39. Rice P., Longden I., Bleasby A. 2000; emboss: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Skaar E. P., Lazio M. P., Seifert H. S. 2002; Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae. J Bacteriol 184:919–927 [CrossRef]
    [Google Scholar]
  42. Stone B. J., Kwaik Y. A. 1999; Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181:1395–1402
    [Google Scholar]
  43. Swanson J., Kraus S. J., Gotschlich E. C. 1971; Studies on gonococcus infection. I. Pili and zones of adhesion: their relation to gonococcal growth patterns. J Exp Med 134:886–906 [CrossRef]
    [Google Scholar]
  44. Tønjum T., Koomey M. 1997; The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships – a review. Gene 192:155–163 [CrossRef]
    [Google Scholar]
  45. Tønjum T., Hagen N., Bøvre K. 1985; Identification of Eikenella corrodens and Cardiobacterium hominis by genetic transformation. Acta Pathol Microbiol Immunol Scand [B] 93:389–394
    [Google Scholar]
  46. Tønjum T., Freitag N. E., Namork E., Koomey M. 1995; Identification and characterization of pilG , a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol Microbiol 16:451–464 [CrossRef]
    [Google Scholar]
  47. Tønjum T., Caugant D. A., Dunham S. A., Koomey M. 1998; Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. Mol Microbiol 29:111–124 [CrossRef]
    [Google Scholar]
  48. van Schaik E. J., Giltner C. L., Audette G. F., Keizer D. W., Bautista D. L., Slupsky C. M., Sykes B. D., Irvin R. T. 2005; DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. J Bacteriol 187:1455–1464 [CrossRef]
    [Google Scholar]
  49. Wolfgang M., Hayes S. F., Koomey M., van Putten J. P. 1999; The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol Microbiol 31:1345–1357 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2006/004200-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004200-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error