1887

Abstract

Understanding the microbial flora of the cystic fibrosis (CF) respiratory tract is of considerable importance, as patient morbidity and death are primarily caused by chronic respiratory infections. However, chronically colonized CF airways represent a surprisingly complex and diverse ecosystem. The precise contributions of different microbes to patient morbidity, and in particular the importance of inter-specific interactions, remain largely unelucidated. The importance of within-species genetic and phenotypic variation has similarly received limited explicit attention. While a host of studies provide data on the microbial species recovered from patients, these are often incomparable due to differences in sampling and data reporting, or do not present the data in a way that aids our understanding of the ecosystem within each patient. This review brings together a cross-section of recent research on the CF airways and the microbes which infect them. The results presented suggest that understanding the CF lung in terms of its community and evolutionary ecology could benefit our understanding of disease progression and influence treatment regimens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004077-0
2007-04-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/917.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004077-0&mimeType=html&fmt=ahah

References

  1. Alvarez, S., Herrero, C., Bru, E. & Perdigon, G. ( 2001; ). Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice. J Food Prot 64, 1768–1774.
    [Google Scholar]
  2. Alvarez, A. E., Ribeiro, A. F., Hessel, G., Bertuzzo, C. S. & Ribeiro, J. D. ( 2004; ). Cystic fibrosis at a Brazilian center of excellence: clinical and laboratory characteristics of 104 patients and their association with genotype and disease severity. J Pediatr (Rio J) 80, 371–379.[CrossRef]
    [Google Scholar]
  3. Anzaudo, M. M., Busquets, N. P., Ronchi, S. & Mayoral, C. ( 2005; ). Microorganismos patógenos aislados en muestras respiratorias de niños con fibrosis quística. Rev Argent Microbiol 37, 129–134.
    [Google Scholar]
  4. Armstrong, D. S., Grimwood, K., Carlin, J. B., Carzino, R., Olinsky, A. & Phelan, P. D. ( 1996; ). Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr Pulmonol 21, 267–275.[CrossRef]
    [Google Scholar]
  5. Besier, S., Smaczny, C., von Mallinckrodt, C., Krahl, A., Ackermann, H., Brade, V. & Wichelhaus, T. A. ( 2007; ). Prevalence and clinical significance of Staphylococcus aureus small colony variants in cystic fibrosis lung disease. J Clin Microbiol 45, 168–172.[CrossRef]
    [Google Scholar]
  6. Burns, J. L., Emerson, J., Stapp, J. R., Yim, D. L., Krzewinski, J., Louden, L., Ramsey, B. W. & Clausen, C. R. ( 1998; ). Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis 27, 158–163.[CrossRef]
    [Google Scholar]
  7. Chang, W., Small, D. A., Toghrol, F. & Bentley, W. E. ( 2005; ). Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6, 115.[CrossRef]
    [Google Scholar]
  8. Ciofu, O., Riis, B., Pressler, T., Poulsen, H. E. & Hoiby, N. ( 2005; ). Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49, 2276–2282.[CrossRef]
    [Google Scholar]
  9. Coenye, T., Goris, J., Spilker, T., Vandamme, P. & LiPuma, J. J. ( 2002; ). Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 40, 2062–2069.[CrossRef]
    [Google Scholar]
  10. Cystic Fibrosis Foundation ( 2004; ). Patient Registry 2004 Annual Report. Bethesda, MD: Cystic Fibrosis Foundation.
  11. De Vos, D., De Chial, M., Cochez, C., Jansen, S., Tummler, B., Meyer, J. M. & Cornelis, P. ( 2001; ). Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175, 384–388.[CrossRef]
    [Google Scholar]
  12. Döring, G. & Hoiby, N. ( 2004; ). Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J Cyst Fib 3, 67–91.
    [Google Scholar]
  13. Duan, K., Dammel, C., Stein, J., Rabin, H. & Surette, M. G. ( 2003; ). Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50, 1477–1491.[CrossRef]
    [Google Scholar]
  14. Eberl, L. ( 2006; ). Quorum sensing in the genus Burkholderia. Int J Med Microbiol 296, 103–110.
    [Google Scholar]
  15. Govan, J. R. ( 1986; ). In vivo significance of bacteriocins and bacteriocin receptors. Scand J Infect Dis 49 (Suppl.), 31–37.
    [Google Scholar]
  16. Griffin, A. S., West, S. A. & Buckling, A. ( 2004; ). Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027.[CrossRef]
    [Google Scholar]
  17. Gutierrez, J. P., Grimwood, K., Armstrong, D. S., Carlin, J. B., Carzino, R., Olinsky, A., Robertson, C. F. & Phelan, P. D. ( 2001; ). Interlobar differences in bronchoalveolar lavage fluid from children with cystic fibrosis. Eur Respir J 17, 281–286.[CrossRef]
    [Google Scholar]
  18. Haas, B., Kraut, J., Marks, J., Zanker, S. C. & Castignetti, D. ( 1991; ). Siderophore presence in sputa of cystic fibrosis patients. Infect Immun 59, 3997–4000.
    [Google Scholar]
  19. Haase, G., Skopnik, H., Groten, T., Kusenbach, G. & Posselt, H.-G. ( 1991; ). Long-term fungal cultures from sputum of patients with cystic fibrosis. Mycoses 34, 373–376.
    [Google Scholar]
  20. Harrison, F. & Buckling, A. ( 2005; ). Hypermutability impedes cooperation in pathogenic bacteria. Curr Biol 15, 1968–1971.[CrossRef]
    [Google Scholar]
  21. Harrison, F., Browning, L. E., Vos, M. & Buckling, A. ( 2006; ). Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 4, 21.[CrossRef]
    [Google Scholar]
  22. Haussler, S., Ziegler, I., Lottel, A., von Gotz, F., Rohde, M., Wehmhohner, D., Saravanamuthu, S., Tummler, B. & Steinmetz, I. ( 2003; ). Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52, 295–301.[CrossRef]
    [Google Scholar]
  23. Hoiby, N. ( 1974; ). Epidemiological investigations of the respiratory tract bacteriology in patients with cystic fibrosis. Acta Pathol Microbiol Scand B Microbiol Immunol 82, 541–550.
    [Google Scholar]
  24. Hoiby, N. & Rosendal, K. ( 1980; ). Epidemiology of Pseudomonas aeruginosa infection in patients treated at a cystic fibrosis centre. Acta Pathol Microbiol Scand B Microbiol Immunol 88, 125–131.
    [Google Scholar]
  25. Hoiby, N., Frederiksen, B. & Pressler, T. ( 2005; ). Eradication of early Pseudomonas aeruginosa infection. J Cyst Fib 4 (Suppl. 2), 49–54.
    [Google Scholar]
  26. Hooi, D. S., Bycroft, B. W., Chhabra, S. R., Williams, P. & Pritchard, D. I. ( 2004; ). Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 72, 6463–6470.[CrossRef]
    [Google Scholar]
  27. Kadouri, D. & O'Toole, G. A. ( 2005; ). Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 71, 4044–4051.[CrossRef]
    [Google Scholar]
  28. Kresse, A. U., Dinesh, S. D., Larbig, K. & Romling, U. ( 2003; ). Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol Microbiol 47, 145–158.
    [Google Scholar]
  29. Lambiase, A., Raia, V., Pezzo, M., Sepe, A., Carnovale, V. & Rossano, F. ( 2006; ). Microbiology of airway disease in a cohort of patients with cystic fibrosis. BMC Infect Dis 6, 4.[CrossRef]
    [Google Scholar]
  30. Lebecque, P., Leal, T., Zylberberg, K., Reychler, G., Bossuyt, X. & Godding, V. ( 2006; ). Towards zero prevalence of chronic Pseudomonas aeruginosa infection in children with cystic fibrosis. J Cyst Fib 5, 237–244.[CrossRef]
    [Google Scholar]
  31. Le Berre, R., Faure, K., Nguyen, S., Pierre, M., Ader, F. & Guery, B. ( 2006; ). Quorum sensing: une nouvelle cible thérapeutique pour Pseudomonas aeruginosa. Med Mal Infect 36, 349–357.[CrossRef]
    [Google Scholar]
  32. LiPuma, J. J., Dasen, S. E., Nielson, D. W., Stern, R. C. & Stull, T. L. ( 1990; ). Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 336, 1094–1096.[CrossRef]
    [Google Scholar]
  33. Lording, A., McGaw, J., Dalton, A., Beal, G., Everard, M. & Taylor, C. J. ( 2006; ). Pulmonary infection in mild variant cystic fibrosis: implications for care. J Cyst Fib 5, 101–104.[CrossRef]
    [Google Scholar]
  34. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2002; ). Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222.[CrossRef]
    [Google Scholar]
  35. Mahenthiralingam, E., Campbell, M. E. & Speert, D. P. ( 1994; ). Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62, 596–605.
    [Google Scholar]
  36. Mashburn, L. M., Jett, A. M., Akins, D. R. & Whiteley, M. ( 2005; ). Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187, 554–566.[CrossRef]
    [Google Scholar]
  37. Massey, R. C., Buckling, A. & ffrench-Constant, R. ( 2004; ). Interference competition and parasite virulence. Proc Biol Sci 271, 785–788.[CrossRef]
    [Google Scholar]
  38. Michel-Briand, Y. & Baysse, C. ( 2002; ). The pyocins of Pseudomonas aeruginosa. Biochimie 84, 499–510.[CrossRef]
    [Google Scholar]
  39. Moore, J. E., Shaw, A., Millar, B. C., Downey, D. G., Murphy, P. G. & Elborn, J. S. ( 2005; ). Microbial ecology of the cystic fibrosis lung: does microflora type influence microbial loading? Br J Biomed Sci 62, 175–178.
    [Google Scholar]
  40. Nixon, G. M., Armstrong, D. S., Carzino, R., Carlin, J. B., Olinsky, A., Robertson, C. F. & Grimwood, K. ( 2001; ). Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr 138, 699–704.[CrossRef]
    [Google Scholar]
  41. Ojeniyi, B., Birch-Andersen, A., Mansa, B., Rosdahl, V. T. & Hoiby, N. ( 1991; ). Morphology of Pseudomonas aeruginosa phages from the sputum of cystic fibrosis patients and from the phage typing set. An electron microscopy study. Acta Pathol Microbiol Immunol Scand 99, 925–930.[CrossRef]
    [Google Scholar]
  42. Palmer, K. L., Mashburn, L. M., Singh, P. K. & Whiteley, M. ( 2005; ). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187, 5267–5277.[CrossRef]
    [Google Scholar]
  43. Petersen, N. T., Hoiby, N., Mordhorst, C. H., Lind, K., Flensborg, E. W. & Bruun, B. ( 1981; ). Respiratory infections in cystic fibrosis patients caused by virus, chlamydia and mycoplasma – possible synergism with Pseudomonas aeruginosa. Acta Paediatr Scand 70, 623–628.[CrossRef]
    [Google Scholar]
  44. Riedel, K., Hentzer, M., Geisenberger, O., Huber, B., Steidle, A., Wu, H., Høiby, N., Givskov, M., Molin, S. & Eberl, L. ( 2001; ). N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147, 3249–3262.
    [Google Scholar]
  45. Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Jones, G. & Bruce, K. D. ( 2004; ). Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 42, 5176–5183.[CrossRef]
    [Google Scholar]
  46. Saiman, L. ( 2004; ). Microbiology of early CF lung disease. Paediatr Respir Rev 5 (Suppl. A), S367–S369.[CrossRef]
    [Google Scholar]
  47. Salunkhe, P., Smart, C. H., Morgan, J. A., Panagea, S., Walshaw, M. J., Hart, C. A., Geffers, R., Tummler, B. & Winstanley, C. ( 2005; ). A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 187, 4908–4920.[CrossRef]
    [Google Scholar]
  48. Santana, M. A., Matos, E., do Socorro Fontoura, M., Franco, R., Barreto, D. & Lemos, A. C. ( 2003; ). Prevalence of pathogens in cystic fibrosis patients in Bahia, Brazil. Braz J Infect Dis 7, 69–72.
    [Google Scholar]
  49. Smith, D. L., Smith, E. G., Pitt, T. L. & Stableforth, D. E. ( 1998; ). Regional microbiology of the cystic fibrosis lung: a post-mortem study in adults. J Infect 37, 41–43.[CrossRef]
    [Google Scholar]
  50. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D'Argenio, D. A., Miller, S. I., Ramsey, B. W., Speert, D. P. & other authors ( 2006; ). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103, 8305–8306.[CrossRef]
    [Google Scholar]
  51. Stites, S. W., Plautz, M. W., Bailey, K., O'Brien-Ladner, A. R. & Wesselius, L. J. ( 1999; ). Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis. Am J Respir Crit Care Med 160, 796–801.[CrossRef]
    [Google Scholar]
  52. Toro, H., Price, S. B., McKee, A. S., Hoerr, F. J., Krehling, J., Perdue, M. & Bauermeister, L. ( 2005; ). Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis 49, 118–124.[CrossRef]
    [Google Scholar]
  53. van Ewijk, B. E., van der Zalm, M. M., Wolfs, T. F. W. & van der Ent, C. K. ( 2005; ). Viral respiratory infections in cystic fibrosis. J Cyst Fib 4, 31–36.[CrossRef]
    [Google Scholar]
  54. Villena, J., Racedo, S., Aguero, G., Bru, E., Medina, M. & Alvarez, S. ( 2005; ). Lactobacillus casei improves resistance to pneumococcal respiratory infection in malnourished mice. J Nutr 135, 1462–1469.
    [Google Scholar]
  55. Wahab, A. A., Janahi, I. A., Marafia, M. M. & El-Shafie, S. ( 2004; ). Microbiological identification in cystic fibrosis patients with CFTR I1234V mutation. J Trop Pediatr 50, 229–233.[CrossRef]
    [Google Scholar]
  56. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. ( 2006; ). Social evolution theory for microorganisms. Nat Rev Microbiol 4, 597–607.[CrossRef]
    [Google Scholar]
  57. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., Birrer, P., Bellon, G., Berger, J. & other authors ( 2002; ). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109, 317–325.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004077-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004077-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error