1887

Abstract

strains have previously been studied with regard to their cell surface ultrastructure and LPS composition. They have now been further characterized with respect to their surface physicochemistry and ability to adhere to haematite. The surfaces of the strains were found to be electronegative and hydrophilic, and these properties could be correlated with LPS composition or the presence of capsular polysaccharides. Strains expressing rough LPS with no capsule were more hydrophobic and electronegative than those possessing smooth LPS or capsules. By combining different approaches, such as contact-angle measurement, hydrophilic/hydrophobic chromatography, microelectrophoresis, adhesion assays and calculation of interaction energies, it was shown that electrostatic interactions predominate over hydrophobic interactions at the cell–iron oxide interface. Bacterial adhesion to haematite was significantly reduced in strains expressing smooth LPS or a capsule. These findings remained true for strains grown under either aerobic or anaerobic conditions, although the surfaces of anaerobic cells appeared to be less electronegative and more hydrophilic than those of aerobic cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003814-0
2007-06-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1872.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003814-0&mimeType=html&fmt=ahah

References

  1. Absolom, D. R., Lamberti, F. V., Policova, Z., Zingg, W., Van Oss, C. J. & Neumann, A. W. ( 1983; ). Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46, 90–97.
    [Google Scholar]
  2. Amro, N. A., Kotra, L. P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S. & Liu, G. ( 2000; ). High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16, 2789–2796.[CrossRef]
    [Google Scholar]
  3. Arnold, R. G., DiChristina, T. J. & Hoffmann, M. R. ( 1988; ). Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol Bioeng 32, 1081–1096.[CrossRef]
    [Google Scholar]
  4. Beliaev, A. S., Saffarini, D. A., McLaughlin, J. L. & Hunnicutt, D. ( 2001; ). MtrC, an outer membrane decaheme c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39, 722–730.[CrossRef]
    [Google Scholar]
  5. Beveridge, T. J. ( 1999; ). Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181, 4725–4733.
    [Google Scholar]
  6. Busscher, H. J., Bos, R., Van der Mei, H. C. & Handley, P. S. ( 2000; ). Physicochemistry of microbial adhesion from overall approach to the limits. In Physical Chemistry of Biological Interfaces, pp. 431–458. Edited by A. Baszkin & W. Norde. New York: Marcel Dekker.
  7. Caccavo, F., Jr ( 1999; ). Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide. Appl Environ Microbiol 65, 5017–5022.
    [Google Scholar]
  8. Caccavo, F., Jr, Frolund, B., Van Ommen Kloeke, F. & Nielsen, P. H. ( 1996; ). Deflocculation of activated sludge by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Appl Environ Microbiol 62, 1487–1490.
    [Google Scholar]
  9. Caccavo, F., Jr, Schamberger, P. C., Keiding, K. & Nielsen, P. H. ( 1997; ). Role of hydrophobicity in the adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to amorphous Fe(III) oxide. Appl Environ Microbiol 63, 3837–3843.
    [Google Scholar]
  10. Costanzo, P. M., Wu, W., Giese, R. F., Jr & Van Oss, C. J. ( 1995; ). Comparison between direct contact angle measurements and thin layer wicking on synthetic monosized cuboid hematite particles. Langmuir 11, 1827–1830.[CrossRef]
    [Google Scholar]
  11. Das, A. & Caccavo, F., Jr ( 2000; ). Dissimilatory Fe(III) oxide reduction by Shewanella alga BrY requires adhesion. Curr Microbiol 40, 344–347.[CrossRef]
    [Google Scholar]
  12. DeFlaun, M. F., Oppenheimer, S. R., Streger, S., Condee, C. W. & Fletcher, M. ( 1999; ). Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad. Appl Environ Microbiol 65, 759–765.
    [Google Scholar]
  13. Flemming, C. A., Palmer, P. J., Jr, Arrage, A. A., Van der Mei, H. C. & White, D. C. ( 1998; ). Cell surface physicochemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants. Biofouling 13, 213–231.[CrossRef]
    [Google Scholar]
  14. Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., Dong, H., Onstott, T. C., Hinman, N. W. & Li, S. ( 1998; ). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62, 3239–3257.[CrossRef]
    [Google Scholar]
  15. Gannon, J. T., Manilal, V. B. & Alexander, M. ( 1991; ). Relationship between cell surface properties and transport of bacteria through soil. Appl Environ Microbiol 57, 190–193.
    [Google Scholar]
  16. Gaspard, S., Vazquez, F. & Holliger, C. ( 1998; ). Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens.. Appl Environ Microbiol 64, 3188–3194.
    [Google Scholar]
  17. Glese, R. F. & Van Oss, C. J. ( 2002; ). Surface thermodynamic properties of minerals. In Colloid and Surface Properties of Clays and Related Minerals. Surfactant Science Series, vol. 105, pp. 229–249. Edited by A. T. Hubbard. New York: Marcel Dekker.
  18. Glasauer, S., Langley, S. & Beveridge, T. J. ( 2001; ). Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo. Appl Environ Microbiol 67, 5544–5550.[CrossRef]
    [Google Scholar]
  19. Grantham, M. C., Dove, P. M. & DiCristina, T. J. ( 1997; ). Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings. Geochim Cosmochim Acta 61, 4467–4477.[CrossRef]
    [Google Scholar]
  20. Haas, J. R. ( 2004; ). Effects of cultivation conditions on acid-base titration properties of Shewanella putrefaciens.. Chem Geol 209, 67–81.[CrossRef]
    [Google Scholar]
  21. Hermansson, M., Kjelleberg, S., Korhonen, T. K. & Stenström, T.-A. ( 1982; ). Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion to an air–water interface. Arch Microbiol 131, 308–312.[CrossRef]
    [Google Scholar]
  22. Korenevsky, A. A., Vinogradov, E., Gorby, Y. & Beveridge, T. J. ( 2002; ). Characterization of the lipopolysaccharides and capsules of Shewanella spp. Appl Environ Microbiol 68, 4653–4657.[CrossRef]
    [Google Scholar]
  23. Kosmulski, M. J. ( 2001; ). Surface charging in absence of strongly adsorbing species. In Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, pp. 65–309. Edited by A. T. Hubbard. New York: Marcel Dekker.
  24. Kosmulski, M. ( 2006; ). pH-dependent surface charging and points of zero charge. III. Update. J Colloid Interface Sci 298, 730–741.[CrossRef]
    [Google Scholar]
  25. Lovley, D. R. & Woodward, J. C. ( 1996; ). Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction. Chem Geol 132, 19–34.[CrossRef]
    [Google Scholar]
  26. Lovley, D. R., Fraga, J. L., Blun-Harris, E. L., Hayes, L. A., Phillips, E. J. P. & Coates, J. D. ( 1998; ). Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26, 152–157.[CrossRef]
    [Google Scholar]
  27. Lovley, D. R., Holmes, D. E. & Nevin, K. P. ( 2004; ). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49, 219–286.
    [Google Scholar]
  28. Lower, S. K., Hochella, M. F., Jr & Beveridge, T. J. ( 2001; ). Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292, 1360–1363.[CrossRef]
    [Google Scholar]
  29. MacDonald, K. L. & Beveridge, T. J. ( 2002; ). Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on Gram-positive bacteria. Can J Microbiol 48, 810–820.[CrossRef]
    [Google Scholar]
  30. Makin, S. A. & Beveridge, T. J. ( 1996; ). The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142, 299–307.[CrossRef]
    [Google Scholar]
  31. Martinez, R. E., Smith, D. S., Pedersen, K. & Ferris, F. G. ( 2003; ). Surface chemical heterogeneity of bacteriogenic iron oxides from a subterranean environment. Environ Sci Technol 37, 5671–5677.[CrossRef]
    [Google Scholar]
  32. Mehta, T., Coppi, M. V., Childers, S. E. & Lovley, D. R. ( 2005; ). Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens.. Appl Environ Microbiol 71, 8634–8641.[CrossRef]
    [Google Scholar]
  33. Moule, A. L., Galbraith, L., Cox, A. D. & Wilkinson, S. G. ( 2004; ). Characterization of a tetrasaccharide released on mild acid hydrolysis of LPS from two rough strains of Shewanella species representing different DNA homology groups. Carbohydr Res 339, 1185–1188.[CrossRef]
    [Google Scholar]
  34. Myers, C. R. & Myers, J. M. ( 1992; ). Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174, 3429–3438.
    [Google Scholar]
  35. Myers, C. R. & Myers, J. M. ( 2004; ). The outer membrane cytochromes of Shewanella oneidensis MR-1 are lipoproteins. Lett Appl Microbiol 39, 466–470.[CrossRef]
    [Google Scholar]
  36. Myers, C. R. & Nealson, K. H. ( 1988; ). Bacterial manganese reduction and growth with manganese oxide as a sole electron acceptor. Science 240, 1319–1321.[CrossRef]
    [Google Scholar]
  37. Nevin, K. P. & Lovley, D. R. ( 2002; ). Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans.. Appl Environ Microbiol 68, 2294–2299.[CrossRef]
    [Google Scholar]
  38. Nevin, K. P. & Lovley, D. R. ( 2002; ). Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19, 141–159.[CrossRef]
    [Google Scholar]
  39. Newman, D. K. & Kolter, R. ( 2000; ). A role for excreted quinones in extracellular electron transfer. Nature 405, 94–97.[CrossRef]
    [Google Scholar]
  40. Pembrey, R. S., Marshall, K. C. & Schneider, R. P. ( 1999; ). Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties?. Appl Environ Microbiol 65, 2877–2894.
    [Google Scholar]
  41. Razatos, A., Ong, Y. L., Sharma, M. M. & Georgiou, G. ( 1998; ). Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci U S A 95, 11059–11064.[CrossRef]
    [Google Scholar]
  42. Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T. & Lovley, D. R. ( 2005; ). Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101.[CrossRef]
    [Google Scholar]
  43. Ruebush, S. S., Icopini, G. A., Brantley, S. L. & Tien, M. ( 2006; ). In vitro enzymatic mineral oxide reduction by membrane fractions from Shewanella oneidensis MR-1. Geochim Cosmochim Acta 70, 56–70.[CrossRef]
    [Google Scholar]
  44. Smith, D. S. & Ferris, F. G. ( 2003; ). Specific surface chemical interactions between hydrous ferric oxide and iron-reducing bacteria determined using pK(a) spectra. J Colloid Interface Sci 266, 60–67.[CrossRef]
    [Google Scholar]
  45. Sokolov, I., Smith, D. S., Henderson, G. S., Gorby, Y. A. & Ferris, F. G. ( 2001; ). Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens.. Environ Sci Technol 35, 341–347.[CrossRef]
    [Google Scholar]
  46. Stenström, T. A. ( 1989; ). Bacterial hydrophobicity, an overall parameter for the measurements of adhesion potential to soil particles. Appl Environ Microbiol 55, 142–147.
    [Google Scholar]
  47. Thamdrup, B. ( 2000; ). Bacterial manganese and iron reduction in aquatic sediments. In Advances in Microbial Ecology, vol. 16, pp. 41–82. Edited by B. Schink. New York: Kluwer Academic/Plenum.
  48. Turick, C. E., Louis, S. T. & Caccavo, F., Jr ( 2002; ). Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68, 2436–2444.[CrossRef]
    [Google Scholar]
  49. Vadillo-Rodriguez, V., Busscher, H. J., Norde, W., De Vries, J. & Van der Mei, H. C. ( 2004a; ). Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces. Microbiology 150, 1015–1022.[CrossRef]
    [Google Scholar]
  50. Vadillo-Rodríguez, V., Busscher, H. J., Norde, W., De Vries, J. & Van der Mei, H. C. ( 2004b; ). Dynamic cell surface hydrophobicity of Lactobacillus strains with and without surface layer proteins. J Bacteriol 186, 6647–6650.[CrossRef]
    [Google Scholar]
  51. Vadillo-Rodríguez, V., Busscher, H. J., Van der Mei, H. C., De Vries, J. & Norde, W. ( 2005; ). Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids Surf B Biointerfaces 41, 33–41.[CrossRef]
    [Google Scholar]
  52. Van Oss, C. J. ( 1994; ). Interfacial Forces in Aqueous Media. New York: Marcel Dekker.
  53. Van Oss, C. J., Good, R. J. & Chaudhury, M. K. ( 1986; ). The role of van der Waals forces and hydrogen bonds in ‘hydrophobic interactions’ between biopolymers and low energy surfaces. J Colloid Interface Sci 111, 378–390.[CrossRef]
    [Google Scholar]
  54. Vinogradov, E., Korenevsky, A. & Beveridge, T. J. ( 2002; ). The structure of the carbohydrate backbone of the LPS from Shewanella putrefaciens CN32. Carbohydr Res 337, 1285–1289.[CrossRef]
    [Google Scholar]
  55. Vinogradov, E., Korenevsky, A. & Beveridge, T. J. ( 2003a; ). The structure of the O-specific polysaccharide chain of the Shewanella algae BrY lipopolysaccharide. Carbohydr Res 338, 385–388.[CrossRef]
    [Google Scholar]
  56. Vinogradov, E., Korenevsky, A. & Beveridge, T. J. ( 2003b; ). The structure of the rough-type lipopolysaccharide from Shewanella oneidensis MR-1, containing 8-amino-8-deoxy-Kdo and an open-chain form of 2-acetamido-2-deoxy-d-galactose. Carbohydr Res 338, 1991–1997.[CrossRef]
    [Google Scholar]
  57. Vinogradov, E., Korenevsky, A. & Beveridge, T. J. ( 2004; ). The structure of the core region of the lipopolysaccharide from Shewanella algae BrY, containing 8-amino-3,8-dideoxy-d-manno-oct-2-ulusonic acid. Carbohydr Res 339, 737–740.[CrossRef]
    [Google Scholar]
  58. Vinogradov, E., Nossova, L., Korenevsky, A. & Beveridge, T. J. ( 2005; ). The structure of the capsular polysaccharide of the Shewanella oneidensis MR-4. Carbohydr Res 340, 1750–1753.[CrossRef]
    [Google Scholar]
  59. Vogler, E. A. ( 1998; ). Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74, 69–117.[CrossRef]
    [Google Scholar]
  60. Williams, V. & Fletcher, M. ( 1996; ). Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl Environ Microbiol 62, 100–104.
    [Google Scholar]
  61. Williams, P., Lambert, P. A., Haigh, C. G. & Brown, M. R. W. ( 1986; ). The influence of the O and K antigens of Klebsiella aerogenes on surface hydrophobicity and susceptibility to phagocytosis and antimicrobial agents. J Med Microbiol 21, 125–132.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003814-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003814-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error