1887

Abstract

Over the past decade, the flavohaemoglobin Hmp has emerged as the most significant nitric oxide (NO)-detoxifying protein in many diverse micro-organisms, particularly pathogenic bacteria. Its expression in enterobacteria is dramatically increased on exposure to NO and other agents of nitrosative stress as a result of transcriptional regulation of gene expression, mediated by (at least) four regulators. One such regulator, NsrR, has recently been shown to be responsible for repression of transcription in the absence of NO in and , but the roles of other members of this regulon in , particularly in surviving nitrosative stresses and , have not been elucidated. This paper demonstrates that an mutant of Serovar Typhimurium expresses high levels of Hmp both aerobically and anaerobically, exceeding those that can be elicited by supplementing media with -nitrosoglutathione (GSNO). Elevated transcription of , , and is also observed, but no evidence was obtained for upregulation. The hyper-resistance to GSNO of an mutant is attributable solely to Hmp, since an double mutant has a wild-type phenotype. However, overexpression of NsrR-regulated genes other than confers some resistance of respiratory oxygen consumption to NO. The ability to enhance, by mutating NsrR, Hmp levels without recourse to exposure to nitrosative stress was used to test the hypothesis that control of Hmp levels is required to avoid oxidative stress, Hmp being a potent generator of superoxide. Within IFN--stimulated J774.2 macrophages, in which high levels of nitrite accumulated (indicative of NO production) an mutant was severely compromised in survival. Surprisingly, under these conditions, an mutant (as well as an double mutant) was also disadvantaged relative to the wild-type bacteria, attributable to the combined oxidative effect of the macrophage oxidative burst and Hmp-generated superoxide. This explanation is supported by the sensitivity of an mutant to superoxide and peroxide. Fur has recently been confirmed as a weak repressor of transcription, and a mutant was also compromised for survival within macrophages even in the absence of elevated NO levels in non-stimulated macrophages. The results indicate the critical role of Hmp in protection of from nitrosative stress within and outside macrophages, but also the key role of transcriptional regulation in tuning Hmp levels to prevent exacerbation of the oxidative stress encountered in macrophages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003731-0
2007-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1756.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003731-0&mimeType=html&fmt=ahah

References

  1. Almeida C. C., Romao C. V., Lindley P. F., Teixeira M., Saraiva L. M. 2006; The role of the hybrid cluster protein in oxidative stress defence. J Biol Chem 281:32445–32450 [CrossRef]
    [Google Scholar]
  2. Bang I. S., Liu L., Vazquez-Torres A., Crouch M. L., Stamler J. S., Fang F. C. 2006; Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohaemoglobin Hmp. J Biol Chem 281:28039–28047 [CrossRef]
    [Google Scholar]
  3. Bodenmiller D. M., Spiro S. 2006; The yjeB ( nsrR ) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol 188:874–881 [CrossRef]
    [Google Scholar]
  4. Cairrao F., Cruz A., Mori H., Arraiano C. M. 2003; Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 50:1349–1360 [CrossRef]
    [Google Scholar]
  5. Chakravortty D., Hansen-Wester I., Hensel M. 2002; Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166 [CrossRef]
    [Google Scholar]
  6. Crawford M. J., Goldberg D. E. 1998a; Regulation of the Salmonella typhimurium flavohaemoglobin gene. A new pathway for bacterial gene expression in response to nitric oxide. J Biol Chem 273:34028–34032 [CrossRef]
    [Google Scholar]
  7. Crawford M. J., Goldberg D. E. 1998b; Role for the Salmonella flavohaemoglobin in protection from nitric oxide. J Biol Chem 273:12543–12547 [CrossRef]
    [Google Scholar]
  8. Crawford M. J., Goldberg D. E. 2006; Regulation of the Salmonella typhimurium flavohaemoglobin gene. A new pathway for bacterial gene expression in response to nitric oxide. J Biol Chem 281:3752
    [Google Scholar]
  9. Cruz-Ramos H., Crack J., Wu G., Hughes M. N., Scott C., Thomson A. J., Green J., Poole R. K. 2002; NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J 21:3235–3244 [CrossRef]
    [Google Scholar]
  10. D'Autreaux B., Touati D., Bersch B., Latour J.-M., Michaud-Soret I. 2002; Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc Natl Acad Sci U S A 99:16619–16624 [CrossRef]
    [Google Scholar]
  11. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C. 2003; Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103–118
    [Google Scholar]
  12. Fang F. C. 2004; Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820 [CrossRef]
    [Google Scholar]
  13. Fang F., Vazquez-Torres A. 2002; Salmonella selectively stops traffic. Trends Microbiol 10:391–392 [CrossRef]
    [Google Scholar]
  14. Fang F. C., DeGroote M. A., Foster J. W., Baumler A. J., Ochsner U., Testerman T., Bearson S., Giard J. C., Xu Y. other authors 1999; Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci U S A 96:7502–7507 [CrossRef]
    [Google Scholar]
  15. Farr S. B., Kogoma T. 1991; Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585
    [Google Scholar]
  16. Flatley J., Barrett J., Pullan S. T., Hughes M. N., Green J., Poole R. K. 2005; Transcriptional responses of Escherichia coli to S -nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 280:10065–10072 [CrossRef]
    [Google Scholar]
  17. Forman H. J., Torres M. 2002; Reactive oxygen species and cell signalling: respiratory burst in macrophage signalling. Am J Respir Crit Care Med 166:S4–S8 [CrossRef]
    [Google Scholar]
  18. Garcia-del Portillo F., Foster J. W., Finlay B. B. 1993; Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun 61:4489–4492
    [Google Scholar]
  19. Gardner P. R., Gardner A. M., Martin L. A., Salzman A. L. 1998; Nitric oxide dioxygenase: an enzymic function for flavohaemoglobin. Proc Natl Acad Sci U S A 95:10378–10383 [CrossRef]
    [Google Scholar]
  20. Halliwell B., Gutteridge J. M. C. 1999 Free Radicals in Biology and Medicine , 3rd edn. Oxford University Press;
    [Google Scholar]
  21. Hart T. W. 1985; Some observations concerning the S -nitroso and S -phenylsulphonyl derivatives of l-cysteine and glutathione. Tetrahedron Lett 26:2013–2016 [CrossRef]
    [Google Scholar]
  22. Hausladen A., Gow A. J., Stamler J. S. 1998; Nitrosative stress: metabolic pathway involving the flavohaemoglobin. Proc Natl Acad Sci U S A 95:14100–14105 [CrossRef]
    [Google Scholar]
  23. Hernandez-Urzua E., Zamorano-Sanchez D. S., Ponce-Coria J., Morett E., Grogan S., Poole R. K., Membrillo-Hernandez J. 2007; Multiple regulators of the flavohaemoglobin ( hmp ) gene of Salmonella enterica serovar Typhimurium include RamA, a transcriptional regulator conferring the multidrug resistance phenotype. Arch Microbiol 187:67–77
    [Google Scholar]
  24. Ignarro L. J., Fukuto J. M., Griscavage J. M., Rogers N. E., Byrns R. E. 1993; Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from l-arginine. Proc Natl Acad Sci U S A 90:8103–8107 [CrossRef]
    [Google Scholar]
  25. Imlay J. A. 2002; How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111–153
    [Google Scholar]
  26. Justino M. C., Vicente J. B., Teixeira M., Saraiva L. M. 2005; New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem 280:2636–2643 [CrossRef]
    [Google Scholar]
  27. Justino M. C., Almeida C. C., Goncalves V. L., Teixeira M., Saraiva L. M. 2006; Escherichia coli YtfE is a di-iron protein with an important function in assembly of iron-sulphur clusters. FEMS Microbiol Lett 257:278–284 [CrossRef]
    [Google Scholar]
  28. Kalupahana R. S., Mastroeni P., Maskell D., Blacklaws B. A. 2005; Activation of murine dendritic cells and macrophages induced by Salmonella enterica serovar Typhimurium. Immunology 115:462–472 [CrossRef]
    [Google Scholar]
  29. Kehres D. G., Janakiraman A., Slauch J. M., Maguire M. E. 2002; Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2, Fe2+, and Mn2+ . J Bacteriol 184:3151–3158 [CrossRef]
    [Google Scholar]
  30. Kharitonov V. G., Sundquist A. R., Sharma V. S. 1994; Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem 269:5881–5883
    [Google Scholar]
  31. Kim C. C., Monack D., Falkow S. 2003; Modulation of virulence by two acidified nitrite-responsive loci of Salmonella enterica serovar Typhimurium. Infect Immun 71:3196–3205 [CrossRef]
    [Google Scholar]
  32. Liochev S. I., Fridovich I. 1993; Effects of paraquat on Escherichia coli : sensitivity to small changes in pH of the medium – a cautionary note. Arch Biochem Biophys 306:518–520 [CrossRef]
    [Google Scholar]
  33. Liu Q. P., Fruit K., Ward J., Correll P. H. 1999; Negative regulation of macrophage activation in response to IFN-gamma and lipopolysaccharide by the STK/RON receptor tyrosine kinase. J Immunol 163:6606–6613
    [Google Scholar]
  34. Maloy S. R., Stewart V. J., Taylor R. K. 1996 Genetic Analysis of Pathogenic Bacteria. A Laboratory Manual Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  35. McCollister B. D., Bourret T. J., Gill R., Jones-Carson J., Vazquez-Torres A. 2005; Repression of SPI2 transcription by nitric oxide-producing, IFNgamma-activated macrophages promotes maturation of Salmonella phagosomes. J Exp Med 202:625–635 [CrossRef]
    [Google Scholar]
  36. Membrillo-Hernandez J., Ioannidis N., Poole R. K. 1996; The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett 382:141–144 [CrossRef]
    [Google Scholar]
  37. Membrillo-Hernandez J., Coopamah M. D., Channa A., Hughes M. N., Poole R. K. 1998; A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser’, S -nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. Mol Microbiol 29:1101–1112 [CrossRef]
    [Google Scholar]
  38. Membrillo-Hernandez J., Coopamah M. D., Anjum M. F., Stevanin T. M., Kelly A., Hughes M. N., Poole R. K. 1999; The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a ‘nitric oxide releaser’, and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem 274:748–754 [CrossRef]
    [Google Scholar]
  39. Mills C. E., Sedelnikova S., Soballe B., Hughes M. N., Poole R. K. 2001; Escherichia coli flavohaemoglobin (Hmp) with equistoichiometric FAD and haem contents has a low affinity for dioxygen in the absence or presence of nitric oxide. Biochem J 353:207–213 [CrossRef]
    [Google Scholar]
  40. Mukhopadhyay P., Zheng M., Bedzyk L. A., LaRossa R. A., Storz G. 2004; Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci U S A 101:745–750 [CrossRef]
    [Google Scholar]
  41. Murphy K. C. 1998; Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071
    [Google Scholar]
  42. Nakano M. M., Geng H., Nakano S., Kobayashi K. 2006; The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression. J Bacteriol 188:5878–5887 [CrossRef]
    [Google Scholar]
  43. Orii Y., Ioannidis N., Poole R. K. 1992; The oxygenated flavohaemoglobin from Escherichia coli : evidence from photodissociation and rapid-scan studies for two kinetic and spectral forms. Biochem Biophys Res Commun 187:94–100 [CrossRef]
    [Google Scholar]
  44. Poole R. K., Anjum M. F., Membrillo-Hernandez J., Kim S. O., Hughes M. N., Stewart V. 1996; Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 178:5487–5492
    [Google Scholar]
  45. Poole R. K., Rogers N. J., D'mello R. A., Hughes M. N., Orii Y. 1997; Escherichia coli flavohaemoglobin (Hmp) reduces cytochrome c and Fe(III)-hydroxamate K by electron transfer from NADH via FAD: sensitivity of oxidoreductase activity to haem-bound dioxygen. Microbiology 143:1557–1565 [CrossRef]
    [Google Scholar]
  46. Poteete A. R., Fenton A. C. 1984; Lambda red-dependent growth and recombination of phage P22. Virology 134:161–167 [CrossRef]
    [Google Scholar]
  47. Pullan S. T., Gidley M. A., Jones R. A., Barrett J., Stevanin T. M., Read R. C., Green J., Poole R. K. 2007; Nitric oxide in chemostat-cultured Escherichia coli is sensed by fnr and other global regulators; unaltered methionine biosynthesis indicates lack of S -nitrosation. J Bacteriol 189:1845–1855 [CrossRef]
    [Google Scholar]
  48. Ratledge C., Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  49. Read R. C., Zimmerli S., Broaddus C., Sanan D. A., Stephens D. S., Ernst J. D. 1996; The ( α 2→8)-linked polysialic acid capsule of group B Neisseria meningitidis modifies multiple steps during interaction with human macrophages. Infect Immun 64:3210–3217
    [Google Scholar]
  50. Renart J., Sandoval I. V. 1984; Western blots. Methods Enzymol 104:455–460
    [Google Scholar]
  51. Rodionov D. A., Dubchak I. L., Arkin A. P., Alm E. J., Gelfand M. S. 2005; Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 1:e55 [CrossRef]
    [Google Scholar]
  52. Rozen S., Skaletsky H. J. 2000 Bioinformatics Methods and Protocols: Methods in Molecular Biology Totowa, NJ: Humana Press;
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Schwartz C. J., Giel J. L., Patschkowski T., Luther C., Ruzicka F. J., Beinert H., Kiley P. J. 2001; IscR, an Fe–S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe–S cluster assembly proteins. Proc Natl Acad Sci U S A 98:14895–14900 [CrossRef]
    [Google Scholar]
  55. Stevanin T. M., Ioannidis N., Mills C. E., Kim S. O., Hughes M. N., Poole R. K. 2000; Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo ′ or bd , from nitric oxide. J Biol Chem 275:35868–35875 [CrossRef]
    [Google Scholar]
  56. Stevanin T. M., Poole R. K., Demoncheaux E. A., Read R. C. 2002; Flavohemoglobin Hmp protects Salmonella enterica serovar typhimurium from nitric oxide-related killing by human macrophages. Infect Immun 70:4399–4405 [CrossRef]
    [Google Scholar]
  57. Stevanin T. M., Moir J. W., Read R. C. 2005; Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect Immun 73:3322–3329 [CrossRef]
    [Google Scholar]
  58. Storz G., Imlay J. A. 1999; Oxidative stress. Curr Opin Microbiol 2:188–194 [CrossRef]
    [Google Scholar]
  59. Szabo C., Zingarelli B., O'Connor M., Salzman A. L. 1996; DNA strand breakage, activation of poly(ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci U S A 93:1753–1758 [CrossRef]
    [Google Scholar]
  60. Tobe T., Sasakawa C., Okada N., Honma Y., Yoshikawa M. 1992; vacB , a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri. J Bacteriol 174:6359–6367
    [Google Scholar]
  61. Tsolis R. M., Baumler A. J., Heffron F. 1995; Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect Immun 63:1739–1744
    [Google Scholar]
  62. Turner R. J., Taylor D. E., Weiner J. H. 1997; Expression of Escherichia coli TehA gives resistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps. Antimicrob Agents Chemother 41:440–444
    [Google Scholar]
  63. Unanue E. R. 1993 Macrophages, Antigen-Presenting Cells, and the Phenomena of Antigen Handling and Presentation. New York: Raven Press;
    [Google Scholar]
  64. van den Berg W. A., Hagen W. R., van Dongen W. M. 2000; The hybrid-cluster protein (‘prismane protein’) from Escherichia coli . Characterization of the hybrid-cluster protein, redox properties of the[2Fe–2S] and [4Fe–2S–2O] clusters and identification of an associated NADH oxidoreductase containing FAD and [2Fe–2S]. Eur J Biochem 267:666–676 [CrossRef]
    [Google Scholar]
  65. Vasudevan S. G., Armarego W. L., Shaw D. C., Lilley P. E., Dixon N. E., Poole R. K. 1991; Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol Gen Genet 226:49–58
    [Google Scholar]
  66. Vazquez-Torres A., Fang F. C. 2001a; Oxygen-dependent anti- Salmonella activity of macrophages. Trends Microbiol 9:29–33 [CrossRef]
    [Google Scholar]
  67. Vazquez-Torres A., Fang F. C. 2001b; Salmonella evasion of the NADPH phagocyte oxidase. Microbes Infect 3:1313–1320 [CrossRef]
    [Google Scholar]
  68. Vazquez-Torres A., Jones-Carson J., Mastroeni P., Ischiropoulos H., Fang F. C. 2000; Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236 [CrossRef]
    [Google Scholar]
  69. Wilmes-Riesenberg M. R., Bearson B., Foster J. W., Curtiss R. III 1996; Role of acid tolerance response in virulence of Salmonella typhimurium. Infect Immun 64:1085–1092
    [Google Scholar]
  70. Wink D. A., Darbyshire J. F., Nims R. W., Saavedra J. E., Ford P. C. 1993; Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 6:23–27 [CrossRef]
    [Google Scholar]
  71. Witthoft T., Eckmann L., Kim J. M., Kagnoff M. F. 1998; Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells. Am J Physiol 275:G564–G571
    [Google Scholar]
  72. Woodmansee A. N., Imlay J. A. 2003; A mechanism by which nitric oxide accelerates the rate of oxidative DNA damage in Escherichia coli. Mol Microbiol 49:11–22 [CrossRef]
    [Google Scholar]
  73. Wu G., Wainwright L. M., Poole R. K. 2003; Microbial globins. Adv Microb Physiol 47:255–310
    [Google Scholar]
  74. Wu G., Corker H., Orii Y., Poole R. K. 2004; Escherichia coli Hmp, an ‘oxygen-binding flavohaemoprotein’, produces superoxide anion and self-destructs. Arch Microbiol 182:193–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003731-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003731-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error