Study of factors which negatively affect expression of the phenol degradation operon in Free

Abstract

Transcription of the plasmid-borne phenol catabolic operon in is activated by the LysR-family regulator CatR in the presence of the effector molecule ,-muconate (CCM), which is an intermediate of the phenol degradation pathway. In addition to the positive control of the operon, several factors negatively affect transcription initiation from the promoter. First, the activation of the operon depends on the extracellular concentration of phenol. The promoter is rapidly activated in the presence of micromolar concentrations of phenol in minimal growth medium, but the initiation of transcription from this promoter is severely delayed after sudden exposure of bacteria to 25 mM phenol. Second, the transcriptional activation from this promoter is impeded when the growth medium of bacteria contains amino acids. The negative effects of amino acids can be suppressed either by overproducing CatR or by increasing, the intracellular amount of CCM. However, the intracellular amount of CCM is a major limiting factor for the transcriptional activation of the operon, as accumulation of CCM in a -defective strain, unable to metabolize CCM (but expressing CatR at a natural level), almost completely relieves the negative effects of amino acids. The intracellular amount of CCM is negatively affected by the catabolite repression control protein via downregulating at the post-transcriptional level the expression of the encoded catechol 1,2-dioxygenase and the phenol monooxygenase, the enzymes needed for CCM production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003681-0
2007-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1860.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003681-0&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages pp 445–447 New York: Interscience Publishers;
    [Google Scholar]
  2. Aranda-Olmedo I., Ramos J. L., Marqués S. 2005; Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Appl Environ Microbiol 71:4191–4198 [CrossRef]
    [Google Scholar]
  3. Bayley S. A., Duggleby C. J., Worsey M. J., Williams P. A., Hardy K. G., Broda P. 1977; Two modes of loss of the TOL function from Pseudomonas putida mt-2. Mol Gen Genet 154:203–204 [CrossRef]
    [Google Scholar]
  4. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113 [CrossRef]
    [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  6. Carmona M., de Lorenzo V. 1999; Involvement of the FtsH (HflB) protease in the activity of σ 54 promoters. Mol Microbiol 31:261–270 [CrossRef]
    [Google Scholar]
  7. Carter P., Bedouelle H., Winter G. 1985; Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res 13:4431–4443 [CrossRef]
    [Google Scholar]
  8. Cases I., de Lorenzo V. 2001; The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 20:1–11 [CrossRef]
    [Google Scholar]
  9. Cases I., de Lorenzo V. 2005; Promoters in the environment: transcriptional regulation in its natural content. Nat Rev Microbiol 3:105–118 [CrossRef]
    [Google Scholar]
  10. Collier L. S., Neidle E. L., Gaines G. L. III 1998; Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol 180:2493–2501
    [Google Scholar]
  11. Cosper N. J., Collier L. S., Clark T. J., Scott R. A., Neidle E. L. 2000; Mutations in catB , the gene encoding muconate cycloisomerase, activate transcription of the distal ben genes and contribute to a complex regulatory circuit in Acinetobacter sp. strain ADP1. J Bacteriol 182:7044–7052 [CrossRef]
    [Google Scholar]
  12. de Lorenzo V., Timmis K. N. 1994; Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn 5 - and Tn 10 -derived minitransposons. Methods Enzymol 235:386–405
    [Google Scholar]
  13. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  14. Dinamarca M. A., Ruiz-Manzano A., Rojo F. 2002; Inactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J Bacteriol 184:3785–3793 [CrossRef]
    [Google Scholar]
  15. Domínguez-Cuevas P., González-Pastor J. E., Marqués S., Ramos J. L., de Lorenzo V. 2006; Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991 [CrossRef]
    [Google Scholar]
  16. Ezezika O. C., Collier-Hyams L. S., Dale H. A., Burk A. C., Neidle E. L. 2006; CatM regulation of the benABCDE operon: functional divergence of two LysR-type paralogs in Acinetobacter baylyi ADP1. Appl Environ Microbiol 72:1749–1758 [CrossRef]
    [Google Scholar]
  17. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  18. Gaines G. L. III, Smith L., Neidle E. L. 1996; Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus.. J Bacteriol 178:6833–6841
    [Google Scholar]
  19. Hanahan D. 1983; Studies on the transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  20. Harayama S., Timmis K. N. 1989; Catabolism of aromatic hydrocarbons by Pseudomonas . In Genetics of Bacterial Diversity pp 151–174 Edited by Hopwood D. A., Chater K. E. London: Academic Press;
    [Google Scholar]
  21. Heipieper H. J., Meinhardt F., Segura A. 2003; The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio : biochemistry, molecular biology and physiological function of unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7 [CrossRef]
    [Google Scholar]
  22. Herrero M., Timmis K. N., de Lorenzo V. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567
    [Google Scholar]
  23. Hester K. L., Lehman J., Najar F., Song L., Roe B. A., MacGregor C. H., Hager P. W., Sokatch J. R., Phibbs P. V. Jr 2000; Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa.. J Bacteriol 182:1144–1149 [CrossRef]
    [Google Scholar]
  24. Houghton J. E., Brown T. M., Appel A. J., Hughes E. J., Ornston L. N. 1995; Discontinuities in the evolution of Pseudomonas putida cat genes. J Bacteriol 177:401–412
    [Google Scholar]
  25. Kasak L., Nurk A., Talvik K., Kivisaar M., Hõrak R. 1993; Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. J Bacteriol 175:8038–8042
    [Google Scholar]
  26. Kivisaar M., Kasak L., Heinaru A., Habicht J., Hõrak R. 1990; Selection of independent plasmids determining phenol degradation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid 24:25–36 [CrossRef]
    [Google Scholar]
  27. Kivisaar M., Kasak L., Nurk A. 1991; Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB , of phenol-degrading Pseudomonas sp. strain EST1001. Gene 98:15–20 [CrossRef]
    [Google Scholar]
  28. Marqués S., Aranda-Olmedo I., Ramos J. L. 2006; Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr Opin Biotechnol 17:50–56 [CrossRef]
    [Google Scholar]
  29. Morales G., Linares J. F., Beloso A., Albar J. P., Martinez J. L., Rojo F. 2004; The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J Bacteriol 186:1337–1344 [CrossRef]
    [Google Scholar]
  30. Müller C., Petruschka L., Cuypers H., Burchhardt G., Herrmann H. 1996; Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J Bacteriol 178:2030–2036
    [Google Scholar]
  31. Nurk A., Kasak L., Kivisaar M. 1991; Sequence of the gene ( pheA ) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida.. Gene 102:13–18 [CrossRef]
    [Google Scholar]
  32. Ojangu E.-L., Teras R., Tover A., Kivisaar M. 2000; Effects of combination of different −10 hexamers and downstream sequences on stationary phase-specific sigma factor σ S-dependent transcription in Pseudomonas putida.. J Bacteriol 182:6707–6713 [CrossRef]
    [Google Scholar]
  33. Parsek M. R., Kivisaar M., Chakrabarty A. M. 1995; Differental DNA bending introduced by the Pseudomonas putida LysR-type regulator, CatR, at the plasmid-borne pheBA and chromosomal catBC promoters. Mol Microbiol 15:819–828 [CrossRef]
    [Google Scholar]
  34. Pavel H., Forsman M., Shingler V. 1994; An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para -substituted methylphenols. J Bacteriol 176:7550–7557
    [Google Scholar]
  35. Peters M., Heinaru E., Talpsep E., Wand H., Stottmeister U., Heinaru A., Nurk A. 1997; Acquisition of a deliberately introduced phenol degradation operon, pheBA , by different indigenous Pseudomonas species. Appl Environ Microbiol 63:4899–4906
    [Google Scholar]
  36. Petruschka L., Burchhardt G., Muller C., Weihe C., Herrmann H. 2001; The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation. Mol Genet Genomics 266:199–206 [CrossRef]
    [Google Scholar]
  37. Ramos J. L., Duque E., Gallegos M. T., Godoy P., Ramos-Gonzalez M. I., Rojas A., Teran W., Segura A. 2002; Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768 [CrossRef]
    [Google Scholar]
  38. Rojo F., Dinamarca M. A. 2004; Catabolite repression and physiological control. In Pseudomonas vol. II pp 365–387 Edited by Ramos J.-L. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  39. Rothmel R. K., Aldrich T. L., Houghton J. E., Coco W. M., Ornston L. N., Chakrabarty A. M. 1990; Nucleotide sequencing of Pseudomonas putida catR : positive regulator of the catBC operon is a member of LysR family. J Bacteriol 172:922–931
    [Google Scholar]
  40. Rothmel R. K., Shinabarger D. L., Parsek M. R., Aldrich T. L., Chakrabarty A. M. 1991; Functional analysis of the Pseudomonas putida regulatory protein CatR: transcriptional studies and determination of the CatR DNA-binding site by hydroxyl-radical footprinting. J Bacteriol 173:4717–4724
    [Google Scholar]
  41. Sanchez-Romero J. M., Diaz-Orejas R., de Lorenzo V. 1998; Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl Environ Microbiol 64:4040–4046
    [Google Scholar]
  42. Santos P. M., Benndorf D., Sa-Correia I. 2004; Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652 [CrossRef]
    [Google Scholar]
  43. Sharma R. C., Schimke R. T. 1996; Preparation of electro-competent E. coli using salt-free growth medium. Biotechniques 20:42–44
    [Google Scholar]
  44. Shingler V. 2003; Integrated regulation in response to aromatic compounds: from signal sensing to attractive behavior. Environ Microbiol 5:1226–1241 [CrossRef]
    [Google Scholar]
  45. Sikkema J., Poolman B., de Bont J. A. 1995; Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222
    [Google Scholar]
  46. Sze C. C., Moore T., Shingler V. 1996; Growth phase-dependent transcription of the σ 54-dependent Po promoter controlling the Pseudomonas -derived (methyl)phenol dmp operon of pVI150. J Bacteriol 178:3727–3735
    [Google Scholar]
  47. Sze C. C., Bernardo L. M. D., Shingler V. 2002; Integration of global regulation of two aromatic-responsive σ 54-dependent systems: a common phenotype by different mechanisms. J Bacteriol 184:760–770 [CrossRef]
    [Google Scholar]
  48. Tover A., Zernant J., Chugani S. A., Chakrabarty A. M., Kivisaar M. 2000; Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons. Microbiology 146:173–183
    [Google Scholar]
  49. Tover A., Ojangu E.-L., Kivisaar M. 2001; Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. Microbiology 147:2149–2156
    [Google Scholar]
  50. Wilson K. J., Sessitsch A., Corbo J. C., Giller K. E., Akkermans A. D., Jefferson R. A. 1995; β -Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology 141:1691–1705 [CrossRef]
    [Google Scholar]
  51. Yuste L., Rojo F. 2001; Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J Bacteriol 183:6197–6206 [CrossRef]
    [Google Scholar]
  52. Yuste L., Canosa I., Rojo F. 1998; Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 180:5218–5226
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003681-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003681-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed