1887

Abstract

The complete genome sequence of strain R was determined to allow its comparative analysis with other corynebacteria. The biology of corynebacteria was explored by refining the definition of the subset of genes that constitutes the corynebacterial core as well as those characteristic of saprophytic and pathogenic ecological niches. In addition, the relative scarcity of corynebacterial sigma factors and the plasticity of their two-component system machinery reflect their relatively exacting nutritional requirements and reduced membrane-associated and secreted proteins. The conservation of key genes and pathways between corynebacteria, mycobacteria and validates the use of to study fundamental processes that are conserved in slow-growing mycobacteria, including pathogenesis-associated mechanisms. The discovery of 39 novel genes in R that have not been previously reported in other corynebacteria supports the rationale for sequencing additional corynebacterial genomes to better define the corynebacterial pan-genome and identify previously undetected metabolic pathways in these organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003657-0
2007-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1042.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003657-0&mimeType=html&fmt=ahah

References

  1. Alm, E. J., Huang, K. H., Price, M. N., Koche, R. P., Keller, K., Dubchak, I. L. & Arkin, A. P. ( 2005; ). The MicrobesOnline Web site for comparative genomics. Genome Res 15, 1015–1022.[CrossRef]
    [Google Scholar]
  2. Besemer, J., Lomsadze, A. & Borodovsky, M. ( 2001; ). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29, 2607–2618.[CrossRef]
    [Google Scholar]
  3. Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  4. Bonamy, C., Labarre, J., Reyes, O. & Leblon, G. ( 1994; ). Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis. Mol Microbiol 14, 571–581.[CrossRef]
    [Google Scholar]
  5. Bonfield, J. K., Smith, K. & Staden, R. ( 1995; ). A new DNA sequence assembly program. Nucleic Acids Res 23, 4992–4999.[CrossRef]
    [Google Scholar]
  6. Boon, C. & Dick, T. ( 2002; ). Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 184, 6760–6767.[CrossRef]
    [Google Scholar]
  7. Calamita, H., Ko, C., Tyagi, S., Yoshimatsu, T., Morrison, N. E. & Bishai, W. R. ( 2005; ). The Mycobacterium tuberculosis SigD sigma factor controls the expression of ribosome-associated gene products in stationary phase and is required for full virulence. Cell Microbiol 7, 233–244.
    [Google Scholar]
  8. Cerdeño-Tárraga, A. M., Efstratiou, A., Dover, L. G., Holden, M. T., Pallen, M., Bentley, S. D., Besra, G. S., Churcher, C., James, K. D. & other authors ( 2003; ). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC 13129. Nucleic Acids Res 31, 6516–6523.[CrossRef]
    [Google Scholar]
  9. Chiou, C. Y., Wang, H. H. & Shaw, G. C. ( 2002; ). Identification and characterization of the non-PTS fru locus of Bacillus megaterium ATCC 14581. Mol Genet Genomics 268, 240–248.[CrossRef]
    [Google Scholar]
  10. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  11. Cole, S. T., Eiglmeier, K., Parkhill, J., James, K. D., Thomson, N. R., Wheeler, P. R., Honore, N., Garnier, T., Churcher, C. & other authors ( 2001; ). Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011.[CrossRef]
    [Google Scholar]
  12. Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. ( 1999a; ). Improved microbial gene identification with glimmer. Nucleic Acids Res 27, 4636–4641.[CrossRef]
    [Google Scholar]
  13. Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White, O. & Salzberg, S. L. ( 1999b; ). Alignment of whole genomes. Nucleic Acids Res 27, 2369–2376.[CrossRef]
    [Google Scholar]
  14. Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. ( 2002; ). Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30, 2478–2483.[CrossRef]
    [Google Scholar]
  15. Demain, A. L. ( 2000; ). Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18, 499–514.[CrossRef]
    [Google Scholar]
  16. Engels, S., Schweitzer, J. E., Ludwig, C., Bott, M. & Schäffer, S. ( 2004; ). clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52, 285–302.[CrossRef]
    [Google Scholar]
  17. Ermolaeva, M. D., White, O. & Salzberg, S. L. ( 2001; ). Prediction of operons in microbial genomes. Nucleic Acids Res 29, 1216–1221.[CrossRef]
    [Google Scholar]
  18. Ewing, B. & Green, P. ( 1998; ). Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8, 186–194.
    [Google Scholar]
  19. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. ( 1998; ). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8, 175–185.[CrossRef]
    [Google Scholar]
  20. Fabret, C., Feher, V. A. & Hoch, J. A. ( 1999; ). Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181, 1975–1983.
    [Google Scholar]
  21. Fischer, H. M. ( 1994; ). Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58, 352–386.
    [Google Scholar]
  22. Fontan, P. A., Walters, S. & Smith, I. ( 2004; ). Cellular signaling pathways and transcriptional regulation in Mycobacterium tuberculosis: stress control and virulence. Current Sci 86, 122–134.
    [Google Scholar]
  23. Fukuchi, K., Kasahara, Y., Asai, K., Kobayashi, K., Moriya, S. & Ogasawara, N. ( 2000; ). The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 146, 1573–1583.
    [Google Scholar]
  24. Gao, B., Paramanathan, R. & Gupta, R. S. ( 2006; ). Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie Van Leeuwenhoek 90, 69–91.[CrossRef]
    [Google Scholar]
  25. Gaspar, A. H. & Ton-That, H. ( 2006; ). Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J Bacteriol 188, 1526–1533.[CrossRef]
    [Google Scholar]
  26. Gerharz, T., Reinelt, S., Kaspar, S., Scapozza, L. & Bott, M. ( 2003; ). Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA. Biochemistry 42, 5917–5924.[CrossRef]
    [Google Scholar]
  27. Glaser, P., Kunst, F., Arnaud, M., Coudart, M. P., Gonzales, W., Hullo, M. F., Ionescu, M., Lubochinsky, B., Marcelino, L. & other authors ( 1993; ). Bacillus subtilis genome project: cloning and sequencing of the 97-kb region from 325 degrees to 333 degrees. Mol Microbiol 10, 371–384.[CrossRef]
    [Google Scholar]
  28. Goh, E. B., Bledsoe, P. J., Chen, L. L., Gyaneshwar, P., Stewart, V. & Igo, M. M. ( 2005; ). Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. J Bacteriol 187, 4890–4899.[CrossRef]
    [Google Scholar]
  29. Gonzalo Asensio, J., Maia, C., Ferrer, N. L., Barilone, N., Laval, F., Soto, C. Y., Winter, N., Daffe, M., Gicquel, B. & other authors ( 2006; ). The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281, 1313–1316.[CrossRef]
    [Google Scholar]
  30. Gordon, D., Abajian, C. & Green, P. ( 1998; ). Consed: a graphical tool for sequence finishing. Genome Res 8, 195–202.[CrossRef]
    [Google Scholar]
  31. Grigoriev, A. ( 1998; ). Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26, 2286–2290.[CrossRef]
    [Google Scholar]
  32. Hahn, M. Y., Raman, S., Anaya, M. & Husson, R. N. ( 2005; ). The Mycobacterium tuberculosis extracytoplasmic-function sigma factor SigL regulates polyketide synthases and secreted or membrane proteins and is required for virulence. J Bacteriol 187, 7062–7071.[CrossRef]
    [Google Scholar]
  33. Hansmeier, N., Chao, T. C., Pühler, A., Tauch, A. & Kalinowski, J. ( 2006; ). The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics 6, 233–250.[CrossRef]
    [Google Scholar]
  34. He, H. & Zahrt, T. C. ( 2005; ). Identification and characterization of a regulatory sequence recognized by Mycobacterium tuberculosis persistence regulator MprA. J Bacteriol 187, 202–212.[CrossRef]
    [Google Scholar]
  35. Hermann, T. ( 2003; ). Industrial production of amino acids by coryneform bacteria. J Biotechnol 104, 155–172.[CrossRef]
    [Google Scholar]
  36. Hermann, T., Pfefferle, W., Baumann, C., Busker, E., Schaffer, S., Bott, M., Sahm, H., Dusch, N., Kalinowski, J. & other authors ( 2001; ). Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22, 1712–1723.[CrossRef]
    [Google Scholar]
  37. Hoskisson, P. A. & Hutchings, M. I. ( 2006; ). MtrAB-LpqB: a conserved three-component system in actinobacteria? Trends Microbiol 14, 444–449.[CrossRef]
    [Google Scholar]
  38. Hutchings, M. I., Hoskisson, P. A., Chandra, G. & Buttner, M. J. ( 2004; ). Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150, 2795–2806.[CrossRef]
    [Google Scholar]
  39. Ikeda, M. & Nakagawa, S. ( 2003; ). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62, 99–109.[CrossRef]
    [Google Scholar]
  40. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M. & Omura, S. ( 2003; ). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21, 526–531.[CrossRef]
    [Google Scholar]
  41. Inui, M., Murakami, S., Okino, S., Kawaguchi, H., Vertès, A. A. & Yukawa, H. ( 2004; ). Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7, 182–196.[CrossRef]
    [Google Scholar]
  42. Ishikawa, J., Yamashita, A., Mikami, Y., Hoshino, Y., Kurita, H., Hotta, K., Shiba, T. & Hattori, M. ( 2004; ). The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A 101, 14925–14930.[CrossRef]
    [Google Scholar]
  43. Jensen-Cain, D. M. & Quinn, F. D. ( 2001; ). Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. Microb Pathog 30, 271–278.[CrossRef]
    [Google Scholar]
  44. Kalinowski, J. ( 2005; ). The genomes of amino acid-producing corynebacteria. In Handbook of Corynebacterium glutamicum, pp. 37–56. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  45. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  46. Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K. K., Arnaud, M., Asai, K., Ashikaga, S., Aymerich, S. & other authors ( 2003; ). Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100, 4678–4683.[CrossRef]
    [Google Scholar]
  47. Kočan, M., Schaffer, S., Ishige, T., Sorger-Herrmann, U., Wendisch, V. F. & Bott, M. ( 2006; ). Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188, 724–732.[CrossRef]
    [Google Scholar]
  48. Kotrba, P., Inui, M. & Yukawa, H. ( 2003; ). A single V317A or V317M substitution in Enzyme II of a newly identified β-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149, 1569–1580.[CrossRef]
    [Google Scholar]
  49. Kumagai, H. ( 2000; ). Microbial production of amino acids in Japan. Adv Biochem Eng Biotechnol 69, 71–85.
    [Google Scholar]
  50. Li, L., Bannantine, J. P., Zhang, Q., Amonsin, A., May, B. J., Alt, D., Banerji, N., Kanjilal, S. & Kapur, V. ( 2005; ). The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A 102, 12344–12349.[CrossRef]
    [Google Scholar]
  51. Liebl, W. ( 2001; ). Corynebacterium – nonmedical. In The Prokaryotes: A Handbook on the Biology of Bacteria, Vol. 3: Archaea and Bacteria: Firmicutes, Actinomycetes, pp. 796–818. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  52. Liebl, W. ( 2005; ). Corynebacterium taxonomy. In Handbook of Corynebacterium glutamicum, pp. 9–34. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  53. Lowe, T. M. & Eddy, S. R. ( 1997; ). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955–964.[CrossRef]
    [Google Scholar]
  54. Mahillon, J. & Chandler, M. ( 1998; ). Insertion sequences. Microbiol Mol Biol Rev 62, 725–774.
    [Google Scholar]
  55. Missiakas, D. & Raina, S. ( 1998; ). The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28, 1059–1066.[CrossRef]
    [Google Scholar]
  56. Möker, N., Brocker, M., Schaffer, S., Krämer, R., Morbach, S. & Bott, M. ( 2004; ). Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54, 420–438.[CrossRef]
    [Google Scholar]
  57. Moon, M. W., Kim, H. J., Oh, T. K., Shin, C. S., Lee, J. S., Kim, S. J. & Lee, J. K. ( 2005; ). Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244, 259–266.[CrossRef]
    [Google Scholar]
  58. Mukherjee, R. & Chatterji, D. ( 2005; ). Evaluation of the role of sigma B in Mycobacterium smegmatis. Biochem Biophys Res Commun 338, 964–972.[CrossRef]
    [Google Scholar]
  59. Nakamura, Y., Nishio, Y., Ikeo, K. & Gojobori, T. ( 2003; ). The genome stability in Corynebacterium species due to lack of the recombinational repair system. Gene 317, 149–155.[CrossRef]
    [Google Scholar]
  60. Nishino, K., Honda, T. & Yamaguchi, A. ( 2005; ). Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J Bacteriol 187, 1763–1772.[CrossRef]
    [Google Scholar]
  61. Nishio, Y., Nakamura, Y., Kawarabayasi, Y., Usuda, Y., Kimura, E., Sugimoto, S., Matsui, K., Yamagishi, A., Kikuchi, H. & other authors ( 2003; ). Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13, 1572–1579.[CrossRef]
    [Google Scholar]
  62. Nishio, Y., Nakamura, Y., Usuda, Y., Sugimoto, S., Matsui, K., Kawarabayasi, Y., Kikuchi, H., Gojobori, T. & Ikeo, K. ( 2004; ). Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level. Mol Biol Evol 21, 1683–1691.[CrossRef]
    [Google Scholar]
  63. Paulsen, I. T., Nguyen, L., Sliwinski, M. K., Rabus, R. & Saier, M. H., Jr ( 2000; ). Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301, 75–100.[CrossRef]
    [Google Scholar]
  64. Raman, S., Song, T., Puyang, X., Bardarov, S., Jacobs, W. R., Jr & Husson, R. N. ( 2001; ). The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 183, 6119–6125.[CrossRef]
    [Google Scholar]
  65. Rice, P., Longden, I. & Bleasby, A. ( 2000; ). emboss: the European Molecular Biology Open Software Suite. Trends Genet 16, 276–277.[CrossRef]
    [Google Scholar]
  66. Saier, M. H., Jr ( 2002; ). The Bacterial Phosphotransferase System. Norwich: Horizon.
  67. Saini, D. K., Malhotra, V., Dey, D., Pant, N., Das, T. K. & Tyagi, J. S. ( 2004; ). DevR–DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology 150, 865–875.[CrossRef]
    [Google Scholar]
  68. Salzberg, S. L., Delcher, A. L., Kasif, S. & White, O. ( 1998; ). Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26, 544–548.[CrossRef]
    [Google Scholar]
  69. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Biology: a Laboratory Manual, 2nd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.
  70. Schmitt, M. P. ( 1999; ). Identification of a two-component signal transduction system from Corynebacterium diphtheriae that activates gene expression in response to the presence of heme and hemoglobin. J Bacteriol 181, 5330–5340.
    [Google Scholar]
  71. Shen, X. H., Jiang, C. Y., Huang, Y., Liu, Z. P. & Liu, S. J. ( 2005; ). Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl Environ Microbiol 71, 3442–3452.[CrossRef]
    [Google Scholar]
  72. Shilo, M. & Wolman, B. ( 1958; ). Activities of bacterial levans and of lipopolysaccharides in the processes of inflammation and infection. Br J Exp Pathol 39, 652–660.
    [Google Scholar]
  73. Skeiky, Y. A., Lodes, M. J., Guderian, J. A., Mohamath, R., Bement, T., Alderson, M. R. & Reed, S. G. ( 1999; ). Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect Immun 67, 3998–4007.
    [Google Scholar]
  74. Stackebrandt, E. & Woese, C. R. ( 1981; ). The evolution of prokaryotes. In Molecular and Cellular Aspects of Microbial Evolution, pp. 1–31. Edited by M. J. Carlile, J. F. Collins & B. E. B. Moseley. Cambridge: Cambridge University Press.
  75. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L. ( 1997; ). Proposal for a new hierarchical classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef]
    [Google Scholar]
  76. Staden, R. ( 1996; ). The Staden sequence analysis package. Mol Biotechnol 5, 233–241.[CrossRef]
    [Google Scholar]
  77. Stecker, C., Johann, A., Herzberg, C., Averhoff, B. & Gottschalk, G. ( 2003; ). Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J Bacteriol 185, 5269–5274.[CrossRef]
    [Google Scholar]
  78. Stothard, P. & Wishart, D. S. ( 2005; ). Circular genome visualization and exploration using CGView. Bioinformatics 21, 537–539.[CrossRef]
    [Google Scholar]
  79. Sun, R., Converse, P. J., Ko, C., Tyagi, S., Morrison, N. E. & Bishai, W. R. ( 2004; ). Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. Mol Microbiol 52, 25–38.[CrossRef]
    [Google Scholar]
  80. Suzuki, N., Okayama, S., Nonaka, H., Tsuge, Y., Inui, M. & Yukawa, H. ( 2005a; ). Large-scale engineering of the Corynebacterium glutamicum genome. Appl Environ Microbiol 71, 3369–3372.[CrossRef]
    [Google Scholar]
  81. Suzuki, N., Tsuge, Y., Inui, M. & Yukawa, H. ( 2005b; ). Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol 67, 225–233.[CrossRef]
    [Google Scholar]
  82. Suzuki, N., Okai, N., Nonaka, H., Tsuge, Y., Inui, M. & Yukawa, H. ( 2006; ). High throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72, 3750–3755.[CrossRef]
    [Google Scholar]
  83. Tatusov, R. L., Koonin, E. V. & Lipman, D. J. ( 1997; ). A genomic perspective on protein families. Science 278, 631–637.[CrossRef]
    [Google Scholar]
  84. Tauch, A., Gotker, S., Puhler, A., Kalinowski, J. & Thierbach, G. ( 2002; ). The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 48, 117–129.[CrossRef]
    [Google Scholar]
  85. Tauch, A., Puhler, A., Kalinowski, J. & Thierbach, G. ( 2003; ). Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J Biotechnol 104, 27–40.[CrossRef]
    [Google Scholar]
  86. Tauch, A., Kaiser, O., Hain, T., Goesmann, A., Weisshaar, B., Albersmeier, A., Bekel, T., Bischoff, N., Brune, I. & other authors ( 2005; ). Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187, 4671–4682.[CrossRef]
    [Google Scholar]
  87. Taylor, B. L. & Zhulin, I. B. ( 1999; ). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63, 479–506.
    [Google Scholar]
  88. Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L. & other authors ( 2005; ). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial ‘pan-genome’. Proc Natl Acad Sci U S A 102, 13950–13955.[CrossRef]
    [Google Scholar]
  89. Tzvetkov, M., Klopprogge, C., Zelder, O. & Liebl, W. ( 2003; ). Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149, 1659–1673.[CrossRef]
    [Google Scholar]
  90. Vertès, A. A., Hatakeyama, K., Inui, M., Kobayashi, M., Kurusu, Y. & Yukawa, H. ( 1993a; ). Replacement recombination in coryneform bacteria: high efficiency integration requirement for non-methylated plasmid DNA. Biosci Biotechnol Biochem 57, 2036–2038.[CrossRef]
    [Google Scholar]
  91. Vertès, A. A., Inui, M., Kobayashi, M., Kurusu, Y. & Yukawa, H. ( 1993b; ). Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144, 181–185.[CrossRef]
    [Google Scholar]
  92. Vertès, A. A., Inui, M. & Yukawa, H. ( 2005; ). Manipulating corynebacteria from individual genes to chromosome. Appl Environ Microbiol 71, 7633–7642.[CrossRef]
    [Google Scholar]
  93. von Graevenitz, A. & Bernard, K. ( 2001; ). The genus Corynebacterium – medical. In The Prokaryotes: A Handbook on the Biology of Bacteria, Vol. 3: Archaea and Bacteria: Firmicutes, Actinomycetes, pp. 819–842. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  94. Waagmeester, A., Thompson, J. & Reyrat, J. M. ( 2005; ). Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol 13, 505–509.[CrossRef]
    [Google Scholar]
  95. Winnen, B., Felce, J. & Saier, M. H., Jr ( 2005; ). Genomic analyses of transporter proteins in Corynebacterium glutamicum and Corynebacterium efficiens. In Handbook of Corynebacterium glutamicum, pp. 149–186. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  96. Yukawa, H., Inui, M. & Vertès, A. A. ( 2007; ). Genomes and genome-level engineering of amino-acid producing bacteria. In Amino Acid Biosynthesis - Pathways, Regulation and Metabolic Engineering. Edited by V. F. Wendisch. Heidleberg: Springer (in press).
  97. Zahrt, T. C. & Deretic, V. ( 2000; ). An essential two-component signal transduction system in Mycobacterium tuberculosis. J Bacteriol 182, 3832–3838.[CrossRef]
    [Google Scholar]
  98. Zahrt, T. C. & Deretic, V. ( 2001; ). Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci U S A 98, 12706–12711.[CrossRef]
    [Google Scholar]
  99. Zhang, R. & Zhang, C. T. ( 2004; ). A systematic method to identify genomic islands and its applications in analyzing the genomes of Corynebacterium glutamicum and Vibrio vulnificus CMCP6 chromosome I. Bioinformatics 20, 612–622.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003657-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003657-0
Loading

Data & Media loading...

Tables of strains and plasmids, and of oligonucleotides and primersused in this study are available as PDF files.

PDF

Tables of strains and plasmids, and of oligonucleotides and primersused in this study are available as PDF files.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error