Differential survival against communities of intestinal amoebae Free

Abstract

Predation from intestinal amoebae may provide selective pressure for the maintenance of high genetic diversity at the locus, whereby serovars better escape predators in particular environments depending on the O-antigens they express. Here, the hypothesis that amoebae from a particular intestinal environment collectively prefer one serovar over another is tested. Collections of , , and were isolated from the intestinal tracts of several vertebrate hosts, including bullfrog tadpoles, goldfish, turtles and bearded dragons, and their feeding preferences were determined. Congeneric amoebae from the same environment had significantly similar feeding preferences. Strikingly, even unrelated amoebae – such as and from goldfish – also had significantly similar feeding preferences. Yet amoebae isolated from different environments showed no similarity in prey choice. Thus, feeding preferences of amoebae appear to reflect their environment, not their taxonomic relationships. A mechanism mediating this phenotypic convergence is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003616-0
2007-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1781.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003616-0&mimeType=html&fmt=ahah

References

  1. Adler P., Wood S. J., Lee Y. C., Lee R. T., Schnaar R. L., Petri W. A. Jr 1995; High affinity binding of the Entamoeba histolytica lectin to polyvalent N -acetylgalactosaminides. J Biol Chem 270:5164–5171 [CrossRef]
    [Google Scholar]
  2. Belley A., Keller K., Gottke M., Chadee K. 1999; Intestinal mucins in colonization and host defense against pathogens. Am J Trop Med Hyg 60:10–15
    [Google Scholar]
  3. Booton G. C., Rogerson A., Bonilla T. D., Seal D. V., Kelly D. J., Beattie T. K., Tomlinson A., Lares-Villa F., Fuerst P. A., Byers T. J. 2004; Molecular and physiological evaluation of subtropical environmental isolates of Acanthamoeba spp., causal agent of Acanthamoeba keratitis. J Eukaryot Microbiol 51:192–200 [CrossRef]
    [Google Scholar]
  4. Boyd E. F., Wang F.-S., Baltran P., Plock S. A., Nelson K., Selander R. K. 1993; Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. J Gen Microbiol 139:1125–1132 [CrossRef]
    [Google Scholar]
  5. Deplancke B., Gaskins H. R. 2001; Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73:1131S–1141S
    [Google Scholar]
  6. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef]
    [Google Scholar]
  7. Gordon D. M., Cowling A. 2003; The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149:3575–3586 [CrossRef]
    [Google Scholar]
  8. Gordon D. M., FitzGibbon F. 1999; The distribution of enteric bacteria from Australian mammals: host and geographical effects. Microbiology 145:2663–2671
    [Google Scholar]
  9. Gordon D. M., Bauer S., Johnson J. R. 2002; The genetic structure of Escherichia coli populations in primary and secondary habitats. Microbiology 148:1513–1522
    [Google Scholar]
  10. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  11. Guttman D. S., Dykhuizen D. E. 1994; Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138:993–1003
    [Google Scholar]
  12. Heinrichs D. E., Yethon J. A., Whitfield C. 1998; Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30:221–232 [CrossRef]
    [Google Scholar]
  13. Hermisson J., Pennings P. S. 2005; Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–2352 [CrossRef]
    [Google Scholar]
  14. Holst O., Brade H. 1992; Chemical structure of the core region of lipopolysaccharides. In Bacterial Endotoxic Lipopolysaccharides pp 134–170 Edited by Morrison D. C., Ryan J. L. Boca Raton, FL: CRC Press;
    [Google Scholar]
  15. Hosking S. L., Craig J. E., High N. J. 1999; Phase variation of lic1A, lic2A and lic3A in colonization of the nasopharynx, bloodstream and cerebrospinal fluid by Haemophilus influenzae type b. Microbiology 145:3005–3011
    [Google Scholar]
  16. Jennings M. P., Hood D. W., Peak I. R. A., Virji M., Moxon E. R. 1995; Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto- N -neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol Microbiol 18:729–740 [CrossRef]
    [Google Scholar]
  17. Jjemba P. K. 2001; The interaction of protozoa with their potential prey bacteria in the rhizosphere. J Eukaryot Microbiol 48:320–324 [CrossRef]
    [Google Scholar]
  18. Knirel Y. A., Kocharova N. A., Bystrova O. V., Katzenellenbogen E., Gamian A. 2002; Structures and serology of the O-specific polysaccharides of bacteria of the genus Citrobacter. Arch Immunol Ther Exp (Warsz) 50:379–391
    [Google Scholar]
  19. Leroy A., De Bruyne G., Mareel M., Nokkaew C., Bailey G., Nelis H. 1995; Contact-dependent transfer of the galactose-specific lectin of Entamoeba histolytica to the lateral surface of enterocytes in culture. Infect Immun 63:4253–4260
    [Google Scholar]
  20. Ley R. E., Peterson D. A., Gordon J. I. 2006; Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848 [CrossRef]
    [Google Scholar]
  21. Liu D., Verma N. K., Romana L. K., Reeves P. R. 1991; Relationships among the rfb regions of Salmonella serovars A, B, and D. J Bacteriol 173:4814–4819
    [Google Scholar]
  22. Matz C., Kjelleberg S. 2005; Off the hook – how bacteria survive protozoan grazing. Trends Microbiol 13:302–307 [CrossRef]
    [Google Scholar]
  23. Milkman R., Jaeger E., McBride R. D. 2003; Molecular evolution of the Escherichia coli chromosome. VI. Two regions of high effective recombination. Genetics 163:475–483
    [Google Scholar]
  24. Palmer C., Bik E. M., Eisen M. B., Eckburg P. B., Sana T. R., Wolber P. K., Relman D. A., Brown P. O. 2006; Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 34:e5 [CrossRef]
    [Google Scholar]
  25. Peduzzi P., Schiemer F. 2004; Bacteria and viruses in the water column of tropical freshwater reservoirs. Environ Microbiol 6:707–715 [CrossRef]
    [Google Scholar]
  26. Pernthaler J. 2005; Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546 [CrossRef]
    [Google Scholar]
  27. Popoff M. Y. 2001 Antigenic Formulas of the Salmonella Serovars , 8th edn. Paris: Institut Pasteur;
    [Google Scholar]
  28. Rabsch W., Andrews H. L., Kingsley R. A., Prager R., Tschape H., Adams L. G., Baumler A. J. 2002; Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 70:2249–2255 [CrossRef]
    [Google Scholar]
  29. Reeves P. 1995; Role of O-antigen variation in the immune response. Trends Microbiol 3:381–386 [CrossRef]
    [Google Scholar]
  30. Robbe C., Capon C., Flahaut C., Michalski J. C. 2003; Microscale analysis of mucin-type O-glycans by a coordinated fluorophore-assisted carbohydrate electrophoresis and mass spectrometry approach. Electrophoresis 24:611–621 [CrossRef]
    [Google Scholar]
  31. Robbe C., Capon C., Coddeville B., Michalski J. C. 2004; Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J 384:307–316 [CrossRef]
    [Google Scholar]
  32. Ronn R., McCaig A. E., Griffiths B. S., Prosser J. I. 2002; Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105 [CrossRef]
    [Google Scholar]
  33. Shirazi T., Longman R. J., Corfield A. P., Probert C. S. 2000; Mucins and inflammatory bowel disease. Postgrad Med J 76:473–478 [CrossRef]
    [Google Scholar]
  34. Stanley C. M., Phillips T. E. 1999; Selective secretion and replenishment of discrete mucin glycoforms from intestinal goblet cells. Am J Physiol 277:G191–G200
    [Google Scholar]
  35. Stenutz R., Weintraub A., Widmalm G. 2006; The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30:382–403 [CrossRef]
    [Google Scholar]
  36. Van Klinken B. J., Dekker J., Buller H. A., Einerhand A. W. 1995; Mucin gene structure and expression: protection vs. adhesion. Am J Physiol 269:G613–G627
    [Google Scholar]
  37. van Putten J. P. 1993; Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J 12:4043–4051
    [Google Scholar]
  38. Wang L., Romana L. K., Reeves P. R. 1992; Molecular analysis of a Salmonella enterica group E1 rfb gene cluster: O-antigen and the genetic basis of the major polymorphism. Genetics 130:429–443
    [Google Scholar]
  39. Whitfield C., Roberts I. S. 1999; Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319 [CrossRef]
    [Google Scholar]
  40. Whitman W. B., Coleman D. C., Wiebe W. J. 1998; Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583 [CrossRef]
    [Google Scholar]
  41. Wildschutte H., Wolfe D. M., Tamewitz A., Lawrence J. G. 2004; Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci U S A 101:10644–10649 [CrossRef]
    [Google Scholar]
  42. Xiang S. H., Haase A. M., Reeves P. R. 1993; Variation of the rfb gene clusters in Salmonella enterica. J Bacteriol 175:4877–4884
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003616-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003616-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed